Environment - simulationEnvironment: startTime=0 stopTime=0 tolerance=1e-06 numberOfIntervals=2500 stepSize=0 Regular simulation: ./ModelicaTest_4.1.0-beta.om_ModelicaTest.Math.TestNonlinear -abortSlowSimulation -alarm=480 -emit_protected -lv LOG_STATS WARNING: other : Warning: unrecognized command line options -abortSlowSimulation INFO : solver: SimManager: Start initialization ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto1: Function 1 ( integral(sin(x)*dx) from x=0 to x=1): Analytical integral value = 0.459698 Numerical integral value = 0.459698 Absolute difference = 0.000000 Function 2 (integral(sin(5*x)*dx) from x=0 to x=13): Analytical integral value = 0.312491 Numerical integral value = 0.312491 Absolute difference = 0.000000 Function 3 (Elliptic integral from x=0 to pi/2): Analytical integral value = 1.854075 Numerical integral value = 1.854075 Absolute difference = 0.000000 ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto2: Function 1 (integral(sin(x)*dx)): Numerical integral value = 0.459698 Function 2 (integral(sin(w*x)*dx)): Numerical integral value = 0.312491 Function 3 (Elliptic integral): Numerical integral value = 1.854075 ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations1: Solve 3 nonlinear equations with relative tolerance = 0.000000 Function 1 (u^2 - 1 = 0): Analytical zero = 1.000000 Numerical zero = 1.000000 Absolute difference = 0.000000 Function 2 (3*u - sin(3*u) - 1 = 0): Analytical zero = 0.644854 Numerical zero = 0.644854 Absolute difference = 0.000000 Function 3 (5 + log(u) - u = 0): Analytical zero = 6.936847 Numerical zero = 6.936847 Absolute difference = 0.000000 ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations2: Solve 3 nonlinear equations with relative tolerance = 0.000000 Function 1 (u^2 - 1): Numerical zero = 1.000000 Function 2 (3*u - sin(w*u) - 1): Numerical zero = 0.644854 Function 3 (p[1] + log(p[2]*u) - m*u): Numerical zero = 6.936847 INFO : solver: SimManager: Start simulation at t = 0.000000