python3 -m fmpy simulate --output-file ModelicaTest_4.0.0_ModelicaTest.Math.TestNonlinear_res.csv --start-time 0 --stop-time 0 --timeout 50 --relative-tolerance 1e-06 --interface-type ModelExchange --solver CVode --output-interval 0 ModelicaTest_4_0_0_ModelicaTest_Math_TestNonlinear.fmu /usr/local/lib/python3.10/dist-packages/fmpy/simulation.py:712: RuntimeWarning: divide by zero encountered in log10 step_size = 10 ** (np.round(np.log10(total_time)) - 3) LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto1: LOG_STDOUT | info | Function 1 ( integral(sin(x)*dx) from x=0 to x=1): LOG_STDOUT | info | Analytical integral value = 0.4596976941318602 LOG_STDOUT | info | Numerical integral value = 0.4596976941318209 LOG_STDOUT | info | Absolute difference = 4e-14 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (integral(sin(5*x)*dx) from x=0 to x=13): LOG_STDOUT | info | Analytical integral value = 0.3124907702476344 LOG_STDOUT | info | Numerical integral value = 0.3124907702520362 LOG_STDOUT | info | Absolute difference = 4e-12 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (Elliptic integral from x=0 to pi/2): LOG_STDOUT | info | Analytical integral value = 1.8540746773013719 LOG_STDOUT | info | Numerical integral value = 1.8540746773012193 LOG_STDOUT | info | Absolute difference = 2e-13 LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto2: LOG_STDOUT | info | Function 1 (integral(sin(x)*dx)): LOG_STDOUT | info | Numerical integral value = 0.4596976941318209 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (integral(sin(w*x)*dx)): LOG_STDOUT | info | Numerical integral value = 0.3124907702520362 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (Elliptic integral): LOG_STDOUT | info | Numerical integral value = 1.8540746773012193 LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations1: LOG_STDOUT | info | Solve 3 nonlinear equations with relative tolerance = 1e-13 | | | | LOG_STDOUT | info | Function 1 (u^2 - 1 = 0): LOG_STDOUT | info | Analytical zero = 1.0000000000000000 LOG_STDOUT | info | Numerical zero = 1.0000000000000000 LOG_STDOUT | info | Absolute difference = 0e+00 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (3*u - sin(3*u) - 1 = 0): LOG_STDOUT | info | Analytical zero = 0.6448544035840081 LOG_STDOUT | info | Numerical zero = 0.6448544035840081 LOG_STDOUT | info | Absolute difference = 0e+00 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (5 + log(u) - u = 0): LOG_STDOUT | info | Analytical zero = 6.9368474072202186 LOG_STDOUT | info | Numerical zero = 6.9368474072202186 LOG_STDOUT | info | Absolute difference = 0e+00 LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations2: LOG_STDOUT | info | Solve 3 nonlinear equations with relative tolerance = 1e-13 | | | | LOG_STDOUT | info | Function 1 (u^2 - 1): LOG_STDOUT | info | Numerical zero = 1.0000000000000000 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (3*u - sin(w*u) - 1): LOG_STDOUT | info | Numerical zero = 0.6448544035840081 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (p[1] + log(p[2]*u) - m*u): LOG_STDOUT | info | Numerical zero = 6.9368474072202186