OMSimulator -r=ModelicaTest_4.0.0_ModelicaTest.Math.TestNonlinear_res.mat --tempDir=temp_ModelicaTest_4_0_0_ModelicaTest_Math_TestNonlinear_fmu --startTime=0 --stopTime=0 --timeout=50 --tolerance=1e-06 ModelicaTest_4_0_0_ModelicaTest_Math_TestNonlinear.fmu info: Set temp directory to "/tmp/omsimulator" info: Set working directory to "." info: New temp directory has been created: "temp_ModelicaTest_4_0_0_ModelicaTest_Math_TestNonlinear_fmu" info: Set temp directory to "/var/lib/jenkins1/ws/OpenModelicaLibraryTestingWork/OpenModelicaLibraryTesting/ModelicaTest_4.0.0_ModelicaTest.Math.TestNonlinear/temp_ModelicaTest_4_0_0_ModelicaTest_Math_TestNonlinear_fmu" info: Set working directory to "/var/lib/jenkins1/ws/OpenModelicaLibraryTestingWork/OpenModelicaLibraryTesting/ModelicaTest_4.0.0_ModelicaTest.Math.TestNonlinear" info: New model "model" with corresponding temp directory "/var/lib/jenkins1/ws/OpenModelicaLibraryTestingWork/OpenModelicaLibraryTesting/ModelicaTest_4.0.0_ModelicaTest.Math.TestNonlinear/temp_ModelicaTest_4_0_0_ModelicaTest_Math_TestNonlinear_fmu/model-g17y8qph" info: model doesn't contain any continuous state stdout | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto1: stdout | info | Function 1 ( integral(sin(x)*dx) from x=0 to x=1): stdout | info | Analytical integral value = 0.4596976941318602 stdout | info | Numerical integral value = 0.4596976941318209 stdout | info | Absolute difference = 4e-14 stdout | info | stdout | info | Function 2 (integral(sin(5*x)*dx) from x=0 to x=13): stdout | info | Analytical integral value = 0.3124907702476344 stdout | info | Numerical integral value = 0.3124907702520362 stdout | info | Absolute difference = 4e-12 stdout | info | stdout | info | Function 3 (Elliptic integral from x=0 to pi/2): stdout | info | Analytical integral value = 1.8540746773013721 stdout | info | Numerical integral value = 1.8540746773012202 stdout | info | Absolute difference = 2e-13 stdout | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto2: stdout | info | Function 1 (integral(sin(x)*dx)): stdout | info | Numerical integral value = 0.4596976941318209 stdout | info | stdout | info | Function 2 (integral(sin(w*x)*dx)): stdout | info | Numerical integral value = 0.3124907702520362 stdout | info | stdout | info | Function 3 (Elliptic integral): stdout | info | Numerical integral value = 1.8540746773012202 stdout | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations1: stdout | info | Solve 3 nonlinear equations with relative tolerance = 1e-13 | | | | stdout | info | Function 1 (u^2 - 1 = 0): stdout | info | Analytical zero = 1.0000000000000000 stdout | info | Numerical zero = 1.0000000000000000 stdout | info | Absolute difference = 0e+00 stdout | info | stdout | info | Function 2 (3*u - sin(3*u) - 1 = 0): stdout | info | Analytical zero = 0.6448544035840081 stdout | info | Numerical zero = 0.6448544035840081 stdout | info | Absolute difference = 0e+00 stdout | info | stdout | info | Function 3 (5 + log(u) - u = 0): stdout | info | Analytical zero = 6.9368474072202186 stdout | info | Numerical zero = 6.9368474072202186 stdout | info | Absolute difference = 0e+00 stdout | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations2: stdout | info | Solve 3 nonlinear equations with relative tolerance = 1e-13 | | | | stdout | info | Function 1 (u^2 - 1): stdout | info | Numerical zero = 1.0000000000000000 stdout | info | stdout | info | Function 2 (3*u - sin(w*u) - 1): stdout | info | Numerical zero = 0.6448544035840081 stdout | info | stdout | info | Function 3 (p[1] + log(p[2]*u) - m*u): stdout | info | Numerical zero = 6.9368474072202186 info: No result file will be created