Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries/ --ompython_omhome=/usr PowerSystems_PowerSystems.Examples.Wind.WindTurbine_PSGR.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/PowerSystems 1.0.1/package.mo", uses=false) Using package PowerSystems with version 1.0.1 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/PowerSystems 1.0.1/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(PowerSystems.Examples.Wind.WindTurbine_PSGR,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="PowerSystems_PowerSystems.Examples.Wind.WindTurbine_PSGR") translateModel(PowerSystems.Examples.Wind.WindTurbine_PSGR,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="PowerSystems_PowerSystems.Examples.Wind.WindTurbine_PSGR") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001492/0.001492, allocations: 109 kB / 17.7 MB, free: 5.383 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.00121/0.00121, allocations: 193.2 kB / 18.64 MB, free: 4.457 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.389/1.389, allocations: 205.1 MB / 224.5 MB, free: 12.23 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/PowerSystems 1.0.1/package.mo): time 0.1682/0.1682, allocations: 37.99 MB / 309.9 MB, free: 5.957 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 3.424e-05/3.442e-05, allocations: 2.281 kB / 376.7 MB, free: 2.961 MB / 318.1 MB Notification: Performance of NFInst.instantiate(PowerSystems.Examples.Wind.WindTurbine_PSGR): time 0.1587/0.1588, allocations: 10.94 MB / 387.7 MB, free: 56.72 MB / 318.1 MB Notification: Performance of NFInst.instExpressions: time 0.00951/0.1683, allocations: 7.12 MB / 394.8 MB, free: 52.95 MB / 318.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0009487/0.1693, allocations: 50.53 kB / 394.8 MB, free: 52.93 MB / 318.1 MB [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/Math/package.mo:1895:3-1973:18:writable] Warning: Pure function 'Modelica.Math.Matrices.eigenValues' contains a call to impure function 'Modelica.Math.Matrices.LAPACK.dgeev_eigenValues'. [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/Math/package.mo:2829:3-2870:10:writable] Warning: Pure function 'Modelica.Math.Matrices.inv' contains a call to impure function 'Modelica.Math.Matrices.LAPACK.dgetrf'. Notification: Performance of NFTyping.typeComponents: time 0.01875/0.188, allocations: 12.89 MB / 407.7 MB, free: 44.8 MB / 318.1 MB Notification: Performance of NFTyping.typeBindings: time 0.003491/0.1916, allocations: 1.101 MB / 408.8 MB, free: 43.69 MB / 318.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.00198/0.1936, allocations: 0.6511 MB / 409.5 MB, free: 43.04 MB / 318.1 MB Notification: Performance of NFFlatten.flatten: time 0.004822/0.1984, allocations: 4.227 MB / 413.7 MB, free: 38.8 MB / 318.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0009516/0.1994, allocations: 0.8031 MB / 414.5 MB, free: 38.03 MB / 318.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.001304/0.2007, allocations: 1.093 MB / 415.6 MB, free: 36.93 MB / 318.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.001055/0.2017, allocations: 1.052 MB / 416.7 MB, free: 35.88 MB / 318.1 MB Notification: Performance of NFPackage.collectConstants: time 0.000133/0.2019, allocations: 112 kB / 416.8 MB, free: 35.77 MB / 318.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.005196/0.2071, allocations: 2.982 MB / 419.8 MB, free: 32.78 MB / 318.1 MB Notification: Performance of combineBinaries: time 0.001532/0.2086, allocations: 2.511 MB / 422.3 MB, free: 30.25 MB / 318.1 MB Notification: Performance of replaceArrayConstructors: time 0.001015/0.2097, allocations: 1.677 MB / 423.9 MB, free: 28.55 MB / 318.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0005107/0.2102, allocations: 207.4 kB / 424.1 MB, free: 28.35 MB / 318.1 MB Notification: Performance of FrontEnd: time 0.0004673/0.2107, allocations: 35.88 kB / 424.2 MB, free: 28.31 MB / 318.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 397 (240) * Number of variables: 397 (221) Notification: Performance of Bindings: time 0.005341/0.216, allocations: 7.351 MB / 431.5 MB, free: 20.86 MB / 318.1 MB Notification: Performance of FunctionAlias: time 0.0005872/0.2166, allocations: 0.5947 MB / 432.1 MB, free: 20.24 MB / 318.1 MB Notification: Performance of Early Inline: time 0.00263/0.2193, allocations: 3.466 MB / 435.6 MB, free: 16.71 MB / 318.1 MB Notification: Performance of simplify1: time 0.0002793/0.2195, allocations: 303.5 kB / 435.9 MB, free: 16.41 MB / 318.1 MB Notification: Performance of Alias: time 0.002718/0.2223, allocations: 3.301 MB / 439.2 MB, free: 12.75 MB / 318.1 MB Notification: Performance of simplify2: time 0.0002131/0.2225, allocations: 271.6 kB / 439.5 MB, free: 12.49 MB / 318.1 MB Notification: Performance of Events: time 0.0002743/0.2228, allocations: 417.3 kB / 439.9 MB, free: 12.08 MB / 318.1 MB Notification: Performance of Detect States: time 0.0006322/0.2234, allocations: 0.8559 MB / 440.7 MB, free: 11.21 MB / 318.1 MB Notification: Performance of Partitioning: time 0.0009419/0.2244, allocations: 1.195 MB / 441.9 MB, free: 9.953 MB / 318.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency generator.w_el could not be devided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) generator.w_el * {-generator.psi_s[2], generator.psi_s[1]} + $DER.generator.psi_s + generator.c.R_s * generator.i_s[1:2] = generator.v_s[1:2] ($RES_SIM_121) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (185/377) **************************** (1) [ALGB] (1) protected Real generator.v_f (nominal = 1000.0) (2) [ALGB] (3) flow Real[3] line.term_p.i (nominal = {1.0 for $i1 in 1:3}) (3) [ALGB] (1) Real[1] trafo.v_n2 (nominal = {1000.0 for $i1 in 1:1}) (4) [DER-] (1) Real $DER.inertia.flange_b.phi (5) [ALGB] (1) Real[1] trafo.v_n1 (nominal = {1000.0 for $i1 in 1:1}) (6) [ALGB] (3) flow Real[3] reference.term.i (nominal = {1.0 for $i1 in 1:3}) (7) [ALGB] (3) flow Real[3] inverter2.AC.i (nominal = {1.0 for $i1 in 1:3}) (8) [ALGB] (1) protected Real rectifier1.iAC2 (9) [ALGB] (1) Real rotor.w = der(rotor.flange.phi) (10) [ALGB] (1) Real[1] trafo.top_p.i_n (start = {0.0 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (11) [ALGB] (1) Real[1] generator.i_n = generator.top.i_n (nominal = {1.0 for $i1 in 1:1}) (12) [ALGB] (1) protected Real infBus.phi (13) [ALGB] (1) protected Real inverter2.iDC0 = inverter2.DC.i[1] + inverter2.DC.i[2] (nominal = 1.0) (14) [ALGB] (3) Real[3] line.term_p.v (nominal = {1000.0 for $i1 in 1:3}) (15) [DISC] (1) Boolean $TEV_1 (16) [ALGB] (2) Real[2] busbar.term.theta (17) [ALGB] (1) protected Real inverter2.iDC1 = inverter2.DC.i[1] - inverter2.DC.i[2] (nominal = 1.0) (18) [DISC] (1) Boolean $TEV_0 (19) [ALGB] (3) Real[3] trafo.top_n.i_term (nominal = {1.0 for $i1 in 1:3}) (20) [ALGB] (3) Real[3] reference.term.v (nominal = {1000.0 for $i1 in 1:3}) (21) [ALGB] (1) protected Real generator.i_f (nominal = 1.0) (22) [ALGB] (2) flow Real[2] generator.heat.ports.Q_flow (23) [ALGB] (3) Real[3] trafo.top_n.v_cond = trafo.v2 .* 21.73913043478261 (nominal = {1000.0 for $i1 in 1:3}) (24) [ALGB] (2) protected Real[2] trafo.dv_tap_pu = (trafo.V_base * trafo.par.dv_tap) / {690.0, 15000.0} (25) [ALGB] (1) protected Real[1] rectifier1.Q_flow (26) [ALGB] (1) Real[1] trafo.top_n.i_n (start = {0.0 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (27) [ALGB] (3) Real[3] inverter2.AC.v (nominal = {1000.0 for $i1 in 1:3}) (28) [ALGB] (3) Real[3] trafo.i2 (start = trafo.i2_start, nominal = {1.0 for $i1 in 1:3}) (29) [ALGB] (3) Real[3] trafo.i1 (start = trafo.i1_start, nominal = {1.0 for $i1 in 1:3}) (30) [ALGB] (1) Real meterDC.v0 (StateSelect = never) (31) [ALGB] (1) Real[1] trafo.top_p.v_n = trafo.v_n1 (start = {0.0 for $i1 in 1:1}, nominal = {1000.0 for $i1 in 1:1}) (32) [ALGB] (4) protected Real[2, 2] generator.Rot_dq (33) [ALGB] (2) protected Real[2] select2.vPhasor_internal (34) [ALGB] (3) Real[3] generator.i (start = generator.i_start, nominal = {1.0 for $i1 in 1:3}) (35) [ALGB] (3) protected Real[3] inverter2.v_dq0 (36) [ALGB] (4) protected Real[2, 2] meter.Rot_dq (37) [ALGB] (1) flow Real infBus.neutral.i (38) [ALGB] (1) Real[1] generator.top.i_n (start = {0.0 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (39) [DER-] (9) Real[3, 3] $DER.line.i (40) [ALGB] (3) protected Real[3] inverter2.switch_dq0 (41) [ALGB] (3) flow Real[3] trafo.term_p.i (nominal = {1.0 for $i1 in 1:3}) (42) [ALGB] (1) Real[1] trafo.top_n.v_n = trafo.v_n2 (start = {0.0 for $i1 in 1:1}, nominal = {1000.0 for $i1 in 1:1}) (43) [ALGB] (3) Real[3] generator.v (start = {690.0, 0.0, 0.0}, nominal = {1000.0 for $i1 in 1:3}) (44) [ALGB] (3) Real[3] generator.term.v (nominal = {1000.0 for $i1 in 1:3}) (45) [ALGB] (2) Real[2] line.term_n.theta (46) [ALGB] (1) Real rotor.P (start = 1.0) (47) [ALGB] (3) Real[3] generator.top.v_term (nominal = {1000.0 for $i1 in 1:3}) (48) [DER-] (12) Real[3, 4] $DER.line.v (49) [ALGB] (3) Real[3] trafo.term_p.v (start = {690.0, 0.0, 0.0}, nominal = {1000.0 for $i1 in 1:3}) (50) [DER-] (2) Real[2] $DER.trafo.term_p.theta (51) [ALGB] (3) Real[3] trafo.top_p.i_term (nominal = {1.0 for $i1 in 1:3}) (52) [ALGB] (1) protected Real[1] generator.i_rq (nominal = {1.0 for $i1 in 1:1}, StateSelect = prefer) (53) [DER-] (2) Real[2] $DER.generator.psi_s (54) [ALGB] (1) Real gear.phi_b (55) [ALGB] (3) flow Real[3] generator.term.i (nominal = {1.0 for $i1 in 1:3}) (56) [ALGB] (1) Real windSpeed.y (57) [ALGB] (1) Real[1] generator.top.v_n = generator.v_n (start = {0.0 for $i1 in 1:1}, nominal = {1000.0 for $i1 in 1:1}) (58) [ALGB] (3) Real[3] trafo.top_p.v_cond = trafo.v1 (nominal = {1000.0 for $i1 in 1:3}) (59) [ALGB] (1) Real gear.phi_a (60) [ALGB] (2) Real[2] meter.term_n.theta (61) [ALGB] (1) Real rotor.A = 3.141592653589793 * rotor.R ^ 2.0 (62) [ALGB] (1) Real generator.w_el (63) [ALGB] (1) protected Real[1] inverter2.Q_flow (64) [ALGB] (2) Real[2] infBus.term.theta (65) [ALGB] (1) flow Real inertia.flange_b.tau (66) [ALGB] (1) Real meter.alpha_i (StateSelect = never) (67) [ALGB] (1) Real rotor.Cp (68) [ALGB] (1) protected Real[1] generator.i_rd (nominal = {1.0 for $i1 in 1:1}, StateSelect = prefer) (69) [DER-] (2) Real[2] $DER.line.term_p.theta (70) [ALGB] (3) Real[3] meter.v (StateSelect = never) (71) [ALGB] (3) flow Real[3] meter.term_n.i (nominal = {1.0 for $i1 in 1:3}) (72) [ALGB] (3) protected Real[3] rectifier1.switch_dq0 (73) [ALGB] (1) Real $FUN_9 (74) [ALGB] (3) Real[3] rectifier1.AC.v (nominal = {1000.0 for $i1 in 1:3}) (75) [ALGB] (3) Real[3] meter.p (StateSelect = never) (76) [ALGB] (1) Real $FUN_8 (77) [ALGB] (1) Real $FUN_7 (78) [ALGB] (1) Real $FUN_6 (79) [ALGB] (1) Real meter.alpha_v (StateSelect = never) (80) [ALGB] (1) Real rotor.lambda (81) [ALGB] (4) Real[2, 2] $FUN_5 (82) [ALGB] (1) Real meter.i_norm (StateSelect = never) (83) [ALGB] (1) Real[1, 1] $FUN_4 (84) [ALGB] (3) flow Real[3] busbar.term.i (nominal = {1.0 for $i1 in 1:3}) (85) [ALGB] (1) Real[1, 1] $FUN_3 (86) [ALGB] (4) Real[2, 2] $FUN_2 (87) [ALGB] (3) Real[3] meter.i (StateSelect = never) (88) [ALGB] (1) protected Real rectifier1.iDC1 = rectifier1.DC.i[1] - rectifier1.DC.i[2] (nominal = 1.0) (89) [ALGB] (1) Real $FUN_1 (90) [ALGB] (1) protected Real rectifier1.iDC0 = rectifier1.DC.i[1] + rectifier1.DC.i[2] (nominal = 1.0) (91) [ALGB] (4) Real[2, 2] $FUN_23 (92) [ALGB] (3) Real[3] meter.term_n.v (nominal = {1000.0 for $i1 in 1:3}) (93) [ALGB] (2) Real[2] select2.vPhasor_out (94) [ALGB] (1) Real $FUN_20 (95) [ALGB] (1) protected Real inverter2.iAC2 (96) [ALGB] (3) flow Real[3] rectifier1.AC.i (nominal = {1.0 for $i1 in 1:3}) (97) [ALGB] (2) flow Real[2] meterDC.term_p.i (nominal = {1.0 for $i1 in 1:2}) (98) [ALGB] (2) Real[2] trafo.term_n.theta (99) [ALGB] (3) Real[3] busbar.term.v (nominal = {1000.0 for $i1 in 1:3}) (100) [ALGB] (1) Real rotor.lambdai (101) [ALGB] (1) Real trafo.top_p.w = trafo.top_p.w (102) [ALGB] (1) Real inertia.a (103) [ALGB] (3) Real[3] trafo.top_n.i_cond = trafo.i2 / 21.73913043478261 (nominal = {1.0 for $i1 in 1:3}) (104) [ALGB] (1) protected Real[1] generator.v_rq (nominal = {1000.0 for $i1 in 1:1}) (105) [ALGB] (1) Real busbar.alpha_v (StateSelect = never) (106) [ALGB] (2) Real[2] meterDC.term_p.v (nominal = {1000.0 for $i1 in 1:2}) (107) [ALGB] (3) Real[3] trafo.v2 (nominal = {1000.0 for $i1 in 1:3}) (108) [DER-] (1) Real[1] $DER.generator.psi_rd (109) [ALGB] (3) Real[3] trafo.v1 (nominal = {1000.0 for $i1 in 1:3}) (110) [ALGB] (1) Real $FUN_19 (111) [ALGB] (9) Real[3, 3] $FUN_18 (112) [ALGB] (1) protected Real[1] generator.v_rd (start = {1.0 for $i1 in 1:1}, nominal = {1000.0 for $i1 in 1:1}) (113) [ALGB] (9) Real[3, 3] $FUN_17 (114) [ALGB] (4) Real[2, 2] $FUN_16 (115) [ALGB] (1) Real $FUN_10 (116) [DER-] (1) Real[1] $DER.generator.psi_rq (117) [ALGB] (1) flow Real rotor.flange.tau (start = -rotor.P_nom / 10.0) (118) [ALGB] (1) protected Real rectifier1.vDC1 = 0.5 * (rectifier1.DC.v[1] - rectifier1.DC.v[2]) (nominal = 1000.0) (119) [ALGB] (1) protected Real rectifier1.vDC0 = 0.5 * (rectifier1.DC.v[2] + rectifier1.DC.v[1]) (nominal = 1000.0) (120) [ALGB] (3) Real[3] generator.top.i_term (nominal = {1.0 for $i1 in 1:3}) (121) [DER-] (1) Real $DER.inertia.w (122) [ALGB] (3) Real[3] generator.top.v_cond = generator.v (nominal = {1000.0 for $i1 in 1:3}) (123) [DER-] (1) Real $DER.generator.phi_el (124) [ALGB] (3) flow Real[3] line.term_n.i (nominal = {1.0 for $i1 in 1:3}) (125) [ALGB] (2) flow Real[2] inverter2.DC.i (nominal = {1.0 for $i1 in 1:2}) (126) [ALGB] (2) protected Real[2] generator.omega (127) [ALGB] (3) Real[3] trafo.top_p.i_cond = trafo.i1 (nominal = {1.0 for $i1 in 1:3}) (128) [DER-] (2) Real[2] $DER.generator.term.theta (129) [ALGB] (3) Real[3] line.term_n.v (nominal = {1000.0 for $i1 in 1:3}) (130) [ALGB] (2) Real[2] inverter2.DC.v (nominal = {1000.0 for $i1 in 1:2}) (131) [DER-] (3) Real[3] $DER.generator.i_s (132) [ALGB] (1) flow Real[1] rectifier1.heat.ports.Q_flow (133) [ALGB] (2) protected Real[2] meterDC.v_ab (134) [DER-] (1) Real $DER.meterDC.p_av (135) [ALGB] (2) Real[2] meter.term_p.theta (136) [ALGB] (1) Real meter.v_norm (StateSelect = never) (137) [ALGB] (2) Real[2] reference.term.theta (138) [ALGB] (1) Real system.thetaRef = system.thetaRef (139) [ALGB] (4) protected Real[2, 2] busbar.R = PowerSystems.Utilities.Transforms.rotation_dq(busbar.term.theta[1]) (140) [ALGB] (2) Real[2] meter.vpp (StateSelect = never) (141) [ALGB] (1) Real system.thetaRel = system.thetaRef - system.thetaRef (142) [ALGB] (2) protected Real[2] trafo.omega (143) [ALGB] (3) flow Real[3] trafo.term_n.i (nominal = {1.0 for $i1 in 1:3}) (144) [ALGB] (1) Real meter.cos_phi (StateSelect = never) (145) [ALGB] (2) Real[2] inverter2.vPhasor (146) [ALGB] (3) Real[3] trafo.term_n.v (start = {15000.0, 0.0, 0.0}, nominal = {1000.0 for $i1 in 1:3}) (147) [ALGB] (1) protected Real infBus.alpha (148) [ALGB] (2) Real[2] inverter2.AC.theta (149) [ALGB] (3) Real[3] trafo.top_n.v_term (nominal = {1000.0 for $i1 in 1:3}) (150) [ALGB] (2) flow Real[2] bdCond.heat.ports.Q_flow (151) [ALGB] (3) flow Real[3] meter.term_p.i (nominal = {1.0 for $i1 in 1:3}) (152) [ALGB] (3) protected Real[3] rectifier1.v_dq0 (153) [ALGB] (1) Real meterDC.i0 (StateSelect = never) (154) [DER-] (1) Real $DER.rotor.flange.phi (155) [ALGB] (1) flow Real inertia.flange_a.tau (156) [ALGB] (2) protected Real[2] infBus.vPhasor_internal (157) [ALGB] (2) protected Real[2] meterDC.i_ab (158) [ALGB] (2) Real[2] rectifier1.DC.v (nominal = {1000.0 for $i1 in 1:2}) (159) [ALGB] (3) Real[3] meter.term_p.v (nominal = {1000.0 for $i1 in 1:3}) (160) [ALGB] (1) protected Real infBus.V (nominal = 1000.0) (161) [ALGB] (1) protected Real inverter2.phi (162) [ALGB] (1) Real[1] trafo.i_n2 = trafo.top_n.i_n (nominal = {1.0 for $i1 in 1:1}) (163) [ALGB] (1) Real[1] trafo.i_n1 = trafo.top_p.i_n (nominal = {1.0 for $i1 in 1:1}) (164) [ALGB] (3) Real[3] generator.top.i_cond = generator.i (nominal = {1.0 for $i1 in 1:3}) (165) [ALGB] (2) Real[2] rectifier1.AC.theta (166) [ALGB] (1) Real trafo.top_n.w = trafo.top_n.w (167) [ALGB] (2) flow Real[2] rectifier1.DC.i (nominal = {1.0 for $i1 in 1:2}) (168) [ALGB] (1) protected Real inverter2.vDC0 = 0.5 * (inverter2.DC.v[2] + inverter2.DC.v[1]) (nominal = 1000.0) (169) [ALGB] (1) protected Real inverter2.vDC1 = 0.5 * (inverter2.DC.v[1] - inverter2.DC.v[2]) (nominal = 1000.0) (170) [ALGB] (2) flow Real[2] meterDC.term_n.i (nominal = {1.0 for $i1 in 1:2}) (171) [ALGB] (2) protected Real[2] line.omega (172) [ALGB] (1) Real generator.tau_el (173) [ALGB] (3) Real[3] trafo.top_p.v_term (nominal = {1000.0 for $i1 in 1:3}) (174) [ALGB] (1) flow Real[1] inverter2.heat.ports.Q_flow (175) [ALGB] (1) Real meterDC.v (StateSelect = never) (176) [ALGB] (3) Real[3] infBus.term.v (nominal = {1000.0 for $i1 in 1:3}) (177) [ALGB] (1) Real busbar.v_norm (nominal = 1000.0, StateSelect = never) (178) [ALGB] (2) Real[2] meterDC.term_n.v (nominal = {1000.0 for $i1 in 1:2}) (179) [ALGB] (1) Real meterDC.p (StateSelect = never) (180) [ALGB] (1) flow Real[1] bdCond1.heat.ports.Q_flow (181) [ALGB] (3) Real[3] generator.v_s (nominal = {1000.0 for $i1 in 1:3}) (182) [ALGB] (1) flow Real[1] bdCond2.heat.ports.Q_flow (183) [ALGB] (1) Real[1] generator.v_n (nominal = {1000.0 for $i1 in 1:1}) (184) [ALGB] (1) Real meterDC.i (StateSelect = never) (185) [ALGB] (3) flow Real[3] infBus.term.i (nominal = {1.0 for $i1 in 1:3}) System Equations (204/377) **************************** (1) [FOR-] (2) ($RES_SIM_205) (1) [----] for $i1 in 1:2 loop (1) [----] [SCAL] (1) meterDC.term_n.i[$i1] + inverter2.DC.i[$i1] = 0.0 ($RES_SIM_206) (1) [----] end for; (2) [SCAL] (1) generator.c.L_s[3] * $DER.generator.i_s[3] + generator.c.R_s * generator.i_s[3] = generator.v_s[3] ($RES_SIM_120) (3) [ARRY] (2) generator.w_el * {-generator.psi_s[2], generator.psi_s[1]} + $DER.generator.psi_s + generator.c.R_s * generator.i_s[1:2] = generator.v_s[1:2] ($RES_SIM_121) (4) [ARRY] (2) meterDC.term_n.v = inverter2.DC.v ($RES_SIM_207) (5) [SCAL] (1) inverter2.iAC2 = inverter2.AC.i * inverter2.AC.i ($RES_SIM_82) (6) [SCAL] (1) generator.i_f = generator.i_rd[1] * generator.c.wf ($RES_SIM_122) (7) [FOR-] (2) ($RES_SIM_208) (7) [----] for $i1 in 1:2 loop (7) [----] [SCAL] (1) rectifier1.DC.i[$i1] + meterDC.term_p.i[$i1] = 0.0 ($RES_SIM_209) (7) [----] end for; (8) [SCAL] (1) generator.v_f = generator.v_rd[1] / generator.c.wf ($RES_SIM_123) (9) [ARRY] (2) meterDC.term_p.i + meterDC.term_n.i = {0.0 for $i1 in 1:2} ($RES_SIM_84) (10) [ARRY] (1) generator.psi_rq = generator.L_mq .* generator.i_s[2] + generator.L_rq * generator.i_rq ($RES_SIM_124) (11) [ARRY] (2) meterDC.term_p.v = meterDC.term_n.v ($RES_SIM_85) (12) [ARRY] (1) generator.psi_rd = generator.L_md .* generator.i_s[1] + generator.L_rd * generator.i_rd ($RES_SIM_125) (13) [SCAL] (1) $DER.meterDC.p_av = 10.0 * (meterDC.p - meterDC.p_av) ($RES_SIM_86) (14) [ARRY] (2) generator.psi_s = $FUN_2 * generator.i_s[1:2] + {generator.L_md * generator.i_rd + generator.c.Psi_pm, generator.L_mq * generator.i_rq} ($RES_SIM_126) (15) [SCAL] (1) meterDC.p = meterDC.v_ab * meterDC.i_ab ($RES_SIM_87) (16) [ARRY] (1) generator.v_rq = {0.0} ($RES_SIM_127) (17) [SCAL] (1) meterDC.i0 = meterDC.i_ab[1] + meterDC.i_ab[2] ($RES_SIM_88) (18) [SCAL] (1) generator.v_rd[1] = 0.0 ($RES_SIM_128) (19) [SCAL] (1) meterDC.i = 0.5 * (meterDC.i_ab[1] - meterDC.i_ab[2]) ($RES_SIM_89) (20) [ARRY] (3) reference.term.i = {0.0 for $i1 in 1:3} ($RES_SIM_10) (21) [ARRY] (2) trafo.term_n.theta = trafo.term_p.theta ($RES_SIM_11) (22) [ARRY] (2) rectifier1.DC.v = meterDC.term_p.v ($RES_SIM_210) (23) [ARRY] (3) trafo.term_n.i = trafo.top_n.i_term ($RES_SIM_12) (24) [ARRY] (3) trafo.term_n.v = trafo.top_n.v_term ($RES_SIM_13) (25) [SCAL] (1) rectifier1.heat.ports[1].Q_flow + bdCond1.heat.ports[1].Q_flow = 0.0 ($RES_SIM_212) (26) [ARRY] (3) trafo.term_p.i = trafo.top_p.i_term ($RES_SIM_14) (27) [ARRY] (3) trafo.term_p.v = trafo.top_p.v_term ($RES_SIM_15) (28) [FOR-] (2) ($RES_SIM_214) (28) [----] for $i1 in 1:2 loop (28) [----] [SCAL] (1) generator.heat.ports[$i1].Q_flow + bdCond.heat.ports[$i1].Q_flow = 0.0 ($RES_SIM_215) (28) [----] end for; (29) [ARRY] (1) trafo.v_n2 = trafo.R_n2 * trafo.i_n2 ($RES_SIM_16) (30) [SCAL] (1) generator.top.i_n[1] = 1.7320508075688772 * generator.top.i_term[3] ($RES_SIM_130) (31) [SCAL] (1) meterDC.v0 = 0.5 * (meterDC.v_ab[1] + meterDC.v_ab[2]) ($RES_SIM_90) (32) [ARRY] (1) trafo.v_n1 = trafo.R_n1 * trafo.i_n1 ($RES_SIM_17) (33) [ARRY] (3) generator.top.i_term = generator.top.i_cond ($RES_SIM_131) (34) [SCAL] (1) meterDC.v = meterDC.v_ab[1] - meterDC.v_ab[2] ($RES_SIM_91) (35) [ARRY] (2) meterDC.i_ab = meterDC.term_p.i / meterDC.I_base ($RES_SIM_92) (36) [ARRY] (3) generator.top.v_cond = generator.top.v_term - {0.0, 0.0, 1.7320508075688772 * generator.top.v_n[1]} ($RES_SIM_132) (37) [ARRY] (2) meterDC.v_ab = meterDC.term_p.v / meterDC.V_base ($RES_SIM_93) (38) [SCAL] (1) 0.0 = -(gear.ratio * rotor.flange.tau + inertia.flange_a.tau) ($RES_SIM_134) (39) [SCAL] (1) $FUN_1 = exp(-rotor.c5 * rotor.lambdai) ($RES_$AUX_277) (40) [ARRY] (1) rectifier1.heat.ports.Q_flow = -rectifier1.Q_flow ($RES_SIM_95) (41) [SCAL] (1) gear.phi_a = gear.ratio * gear.phi_b ($RES_SIM_135) (42) [ARRY] (4) $FUN_2 = diagonal(generator.c.L_s[1:2]) ($RES_$AUX_276) (43) [SCAL] (1) gear.phi_b = inertia.flange_b.phi ($RES_SIM_136) (44) [ARRY] (1) $FUN_3 = diagonal(generator.R_rd) ($RES_$AUX_275) (45) [SCAL] (1) rectifier1.iDC0 + 1.7320508075688772 * rectifier1.AC.i[3] = 0.0 ($RES_SIM_97) (46) [SCAL] (1) gear.phi_a = rotor.flange.phi ($RES_SIM_137) (47) [ARRY] (1) $FUN_4 = diagonal(generator.R_rq) ($RES_$AUX_274) (48) [SCAL] (1) rectifier1.iDC1 + rectifier1.switch_dq0 * rectifier1.AC.i = 0.0 ($RES_SIM_98) (49) [ARRY] (4) $FUN_5 = PowerSystems.Utilities.Transforms.rotation_dq(generator.phi_el - generator.term.theta[2]) ($RES_$AUX_273) (50) [ARRY] (3) rectifier1.AC.v = rectifier1.v_dq0 + {0.0, 0.0, 1.7320508075688772 * rectifier1.vDC0} ($RES_SIM_99) (51) [SCAL] (1) inertia.a = $DER.inertia.w ($RES_SIM_139) (52) [SCAL] (1) $FUN_6 = sqrt(rectifier1.iAC2) ($RES_$AUX_272) (53) [SCAL] (1) $FUN_7 = cos(inverter2.phi) ($RES_$AUX_271) (54) [SCAL] (1) $FUN_8 = sin(inverter2.phi) ($RES_$AUX_270) (55) [ARRY] (2) trafo.omega = $DER.trafo.term_p.theta ($RES_SIM_21) (56) [ARRY] (3) trafo.v1 = trafo.v2 ($RES_SIM_24) (57) [ARRY] (3) trafo.i1 + trafo.i2 = {0.0 for $i1 in 1:3} ($RES_SIM_25) (58) [SCAL] (1) trafo.top_n.i_n[1] = 1.7320508075688772 * trafo.top_n.i_term[3] ($RES_SIM_26) (59) [SCAL] (1) inertia.w = $DER.inertia.flange_b.phi ($RES_SIM_140) (60) [ARRY] (3) trafo.top_n.i_term = trafo.top_n.i_cond / trafo.top_n.w ($RES_SIM_27) (61) [ARRY] (3) trafo.top_n.w * trafo.top_n.v_cond = trafo.top_n.v_term - {0.0, 0.0, 1.7320508075688772 * trafo.top_n.v_n[1]} ($RES_SIM_28) (62) [SCAL] (1) inertia.J * inertia.a = inertia.flange_a.tau + inertia.flange_b.tau ($RES_SIM_142) (63) [SCAL] (1) trafo.top_p.i_n[1] = 1.7320508075688772 * trafo.top_p.i_term[3] ($RES_SIM_29) (64) [SCAL] (1) $FUN_9 = abs(inverter2.vDC1) ($RES_$AUX_269) (65) [SCAL] (1) $FUN_10 = sqrt(inverter2.iAC2) ($RES_$AUX_268) (66) [SCAL] (1) meter.v_norm = sqrt(meter.v * meter.v) ($RES_$AUX_267) (67) [SCAL] (1) system.thetaRef = 314.1592653589793 * time ($RES_SIM_145) (68) [SCAL] (1) meter.alpha_v = atan2(meter.Rot_dq[:, 2] * meter.v[1:2], meter.Rot_dq[:, 1] * meter.v[1:2]) ($RES_$AUX_266) (69) [SCAL] (1) meter.i_norm = sqrt(meter.i * meter.i) ($RES_$AUX_265) (70) [SCAL] (1) meter.alpha_i = atan2(meter.Rot_dq[:, 2] * meter.i[1:2], meter.Rot_dq[:, 1] * meter.i[1:2]) ($RES_$AUX_264) (71) [SCAL] (1) meter.cos_phi = cos(meter.alpha_v - meter.alpha_i) ($RES_$AUX_263) (72) [SCAL] (1) rotor.lambda = (rotor.R * rotor.w) / windSpeed.y ($RES_SIM_149) (73) [ARRY] (4) $FUN_16 = PowerSystems.Examples.Wind.WindTurbine_PSGR.meter.rot_dq(meter.term_p.theta[1]) ($RES_$AUX_262) (74) [ARRY] (9) $FUN_17 = diagonal({line.C, line.C, line.C0}) ($RES_$AUX_261) (75) [ARRY] (9) $FUN_18 = diagonal({line.L, line.L, line.L0}) ($RES_$AUX_260) (76) [ARRY] (3) trafo.top_p.i_term = trafo.top_p.i_cond / trafo.top_p.w ($RES_SIM_30) (77) [ARRY] (3) trafo.top_p.w * trafo.top_p.v_cond = trafo.top_p.v_term - {0.0, 0.0, 1.7320508075688772 * trafo.top_p.v_n[1]} ($RES_SIM_31) (78) [ARRY] (3) busbar.term.i = {0.0 for $i1 in 1:3} ($RES_SIM_34) (79) [SCAL] (1) 1.7320508075688772 * infBus.term.i[3] + infBus.neutral.i = 0.0 ($RES_SIM_36) (80) [SCAL] (1) rotor.lambdai = 1/(rotor.lambda + 0.08 * rotor.beta) - 0.035 / (1.0 + rotor.beta ^ 3.0) ($RES_SIM_150) (81) [ARRY] (2) infBus.term.theta = {system.thetaRel, system.thetaRef} ($RES_SIM_37) (82) [SCAL] (1) rotor.Cp = (rotor.c2 * rotor.lambdai - (rotor.c4 + rotor.c3 * rotor.beta)) * rotor.c1 * $FUN_1 + rotor.c6 * rotor.lambda ($RES_SIM_151) (83) [SCAL] (1) rotor.P * rotor.P_nom = 0.5 * windSpeed.y ^ 3.0 * rotor.A * rotor.rho * rotor.Cp ($RES_SIM_152) (84) [ARRY] (3) infBus.term.v = {$FUN_19 * infBus.V, $FUN_20 * infBus.V, 0.0} ($RES_SIM_39) (85) [SCAL] (1) $FUN_19 = cos(infBus.phi) ($RES_$AUX_259) (86) [SCAL] (1) 0.0 = rotor.P * rotor.P_nom + rotor.w * rotor.flange.tau ($RES_SIM_153) (87) [SCAL] (1) $FUN_20 = sin(infBus.phi) ($RES_$AUX_258) (88) [SCAL] (1) windSpeed.y = windSpeed.offset + (if $TEV_0 then 0.0 else if $TEV_1 then (windSpeed.height * (time - windSpeed.startTime)) / windSpeed.duration else windSpeed.height) ($RES_SIM_154) (89) [SCAL] (1) busbar.v_norm = sqrt(busbar.term.v * busbar.term.v) ($RES_$AUX_257) (90) [SCAL] (1) busbar.alpha_v = atan2(busbar.R[:, 2] * busbar.term.v[1:2], busbar.R[:, 1] * busbar.term.v[1:2]) ($RES_$AUX_256) (91) [ARRY] (4) $FUN_23 = PowerSystems.Utilities.Transforms.rotation_dq(busbar.term.theta[1]) ($RES_$AUX_255) (92) [SCAL] (1) infBus.phi = infBus.term.theta[1] + infBus.alpha ($RES_SIM_40) (93) [SCAL] (1) infBus.alpha = infBus.vPhasor_internal[2] ($RES_SIM_41) (94) [SCAL] (1) infBus.V = infBus.vPhasor_internal[1] * infBus.V_base ($RES_SIM_42) (95) [ARRY] (2) infBus.vPhasor_internal = {infBus.v0, infBus.alpha0} ($RES_SIM_43) (96) [ARRY] (2) line.term_n.theta = line.term_p.theta ($RES_SIM_44) (97) [ARRY] (9) line.omega[2] * line.L * {{-line.i[2, 1], -line.i[2, 2], -line.i[2, 3]}, {line.i[1, 1], line.i[1, 2], line.i[1, 3]}, {0.0, 0.0, 0.0}} + $FUN_18 * $DER.line.i + line.R * line.i = line.v[:, 1:3] - line.v[:, 2:4] ($RES_SIM_45) (98) [ARRY] (12) line.omega[2] * line.C * {{-line.v[2, 1], -line.v[2, 2], -line.v[2, 3], -line.v[2, 4]}, {line.v[1, 1], line.v[1, 2], line.v[1, 3], line.v[1, 4]}, {0.0, 0.0, 0.0, 0.0}} + $FUN_17 * $DER.line.v + line.G * line.v = {{2.0 * (line.term_p.i[1] - line.i[1, 1]), line.i[1, 1] - line.i[1, 2], line.i[1, 2] - line.i[1, 3], 2.0 * (line.i[1, 3] + line.term_n.i[1])}, {2.0 * (line.term_p.i[2] - line.i[2, 1]), line.i[2, 1] - line.i[2, 2], line.i[2, 2] - line.i[2, 3], 2.0 * (line.i[2, 3] + line.term_n.i[2])}, {2.0 * (line.term_p.i[3] - line.i[3, 1]), line.i[3, 1] - line.i[3, 2], line.i[3, 2] - line.i[3, 3], 2.0 * (line.i[3, 3] + line.term_n.i[3])}} ($RES_SIM_46) (99) [ARRY] (3) line.v[:, 4] = line.term_n.v ($RES_SIM_47) (100) [ARRY] (3) line.v[:, 1] = line.term_p.v ($RES_SIM_48) (101) [ARRY] (2) line.omega = $DER.line.term_p.theta ($RES_SIM_49) (102) [SCAL] (1) rectifier1.AC.i[3] + reference.term.i[3] + generator.term.i[3] = 0.0 ($RES_SIM_162) (103) [SCAL] (1) rectifier1.AC.i[2] + reference.term.i[2] + generator.term.i[2] = 0.0 ($RES_SIM_163) (104) [SCAL] (1) rectifier1.AC.i[1] + reference.term.i[1] + generator.term.i[1] = 0.0 ($RES_SIM_164) (105) [SCAL] (1) reference.term.v[3] = generator.term.v[3] ($RES_SIM_165) (106) [SCAL] (1) reference.term.v[3] = rectifier1.AC.v[3] ($RES_SIM_166) (107) [SCAL] (1) reference.term.v[2] = generator.term.v[2] ($RES_SIM_167) (108) [SCAL] (1) reference.term.v[2] = rectifier1.AC.v[2] ($RES_SIM_168) (109) [SCAL] (1) reference.term.v[1] = generator.term.v[1] ($RES_SIM_169) (110) [SCAL] (1) rotor.A = 3.141592653589793 * rotor.R ^ 2.0 ($RES_BND_220) (111) [SCAL] (1) rotor.w = $DER.rotor.flange.phi ($RES_BND_221) (112) [SCAL] (1) system.thetaRel = system.thetaRef - system.thetaRef ($RES_BND_222) (113) [ARRY] (3) generator.top.v_cond = generator.v ($RES_BND_224) (114) [ARRY] (3) generator.top.i_cond = generator.i ($RES_BND_225) (115) [ARRY] (2) meter.term_n.theta = meter.term_p.theta ($RES_SIM_50) (116) [ARRY] (1) generator.top.v_n = generator.v_n ($RES_BND_226) (117) [ARRY] (3) meter.term_p.i + meter.term_n.i = {0.0 for $i1 in 1:3} ($RES_SIM_51) (118) [ARRY] (3) meter.term_p.v = meter.term_n.v ($RES_SIM_52) (119) [ARRY] (1) generator.i_n = generator.top.i_n ($RES_BND_228) (120) [ARRY] (4) meter.Rot_dq = $FUN_16 ($RES_SIM_53) (121) [ARRY] (2) reference.term.theta = {0.0, generator.phi_el} ($RES_SIM_9) (122) [SCAL] (1) reference.term.v[1] = rectifier1.AC.v[1] ($RES_SIM_170) (123) [SCAL] (1) reference.term.theta[2] = generator.term.theta[2] ($RES_SIM_171) (124) [SCAL] (1) reference.term.theta[2] = rectifier1.AC.theta[2] ($RES_SIM_172) (125) [SCAL] (1) reference.term.theta[1] = generator.term.theta[1] ($RES_SIM_173) (126) [SCAL] (1) reference.term.theta[1] = rectifier1.AC.theta[1] ($RES_SIM_174) (127) [FOR-] (3) ($RES_SIM_175) (127) [----] for $i1 in 1:3 loop (127) [----] [SCAL] (1) trafo.term_n.i[$i1] + line.term_p.i[$i1] = 0.0 ($RES_SIM_176) (127) [----] end for; (128) [ARRY] (3) trafo.term_n.v = line.term_p.v ($RES_SIM_177) (129) [ARRY] (2) trafo.term_n.theta = line.term_p.theta ($RES_SIM_178) (130) [FOR-] (3) ($RES_SIM_179) (130) [----] for $i1 in 1:3 loop (130) [----] [SCAL] (1) meter.term_n.i[$i1] + trafo.term_p.i[$i1] = 0.0 ($RES_SIM_180) (130) [----] end for; (131) [SCAL] (1) rectifier1.vDC1 = 0.5 * (rectifier1.DC.v[1] - rectifier1.DC.v[2]) ($RES_BND_230) (132) [SCAL] (1) rectifier1.vDC0 = 0.5 * (rectifier1.DC.v[2] + rectifier1.DC.v[1]) ($RES_BND_231) (133) [SCAL] (1) rectifier1.iDC1 = rectifier1.DC.i[1] - rectifier1.DC.i[2] ($RES_BND_232) (134) [SCAL] (1) rectifier1.iDC0 = rectifier1.DC.i[1] + rectifier1.DC.i[2] ($RES_BND_233) (135) [ARRY] (1) rectifier1.Q_flow = {rectifier1.R_nom * rectifier1.par.eps[1] * rectifier1.iAC2} ($RES_SIM_100) (136) [SCAL] (1) inverter2.vDC1 = 0.5 * (inverter2.DC.v[1] - inverter2.DC.v[2]) ($RES_BND_236) (137) [ARRY] (3) meter.p = {meter.v[1:2] * meter.i[1:2], -{-meter.v[2], meter.v[1]} * meter.i[1:2], meter.v[3] * meter.i[3]} ($RES_SIM_61) (138) [ARRY] (3) rectifier1.v_dq0 = rectifier1.vDC1 * rectifier1.switch_dq0 ($RES_SIM_101) (139) [SCAL] (1) inverter2.vDC0 = 0.5 * (inverter2.DC.v[2] + inverter2.DC.v[1]) ($RES_BND_237) (140) [ARRY] (3) meter.i = meter.term_p.i / meter.I_base ($RES_SIM_62) (141) [ARRY] (3) rectifier1.switch_dq0 = (rectifier1.S_abs * rectifier1.AC.i) / (1e-5 + $FUN_6) ($RES_SIM_102) (142) [SCAL] (1) inverter2.iDC1 = inverter2.DC.i[1] - inverter2.DC.i[2] ($RES_BND_238) (143) [ARRY] (2) meter.vpp = 1.7320508075688772 * {meter.v[2], -meter.v[1]} ($RES_SIM_63) (144) [SCAL] (1) rectifier1.iAC2 = rectifier1.AC.i * rectifier1.AC.i ($RES_SIM_103) (145) [SCAL] (1) inverter2.iDC0 = inverter2.DC.i[1] + inverter2.DC.i[2] ($RES_BND_239) (146) [ARRY] (3) meter.v = meter.term_p.v / meter.V_base ($RES_SIM_64) (147) [ARRY] (2) select2.vPhasor_out = select2.vPhasor_internal ($RES_SIM_66) (148) [ARRY] (3) generator.term.i = generator.top.i_term ($RES_SIM_106) (149) [ARRY] (3) generator.term.v = generator.top.v_term ($RES_SIM_107) (150) [ARRY] (3) meter.term_n.v = trafo.term_p.v ($RES_SIM_181) (151) [SCAL] (1) generator.w_el = $DER.generator.phi_el ($RES_SIM_108) (152) [ARRY] (2) select2.vPhasor_internal = {select2.v0, select2.alpha0} ($RES_SIM_69) (153) [ARRY] (2) meter.term_n.theta = trafo.term_p.theta ($RES_SIM_182) (154) [SCAL] (1) -inertia.flange_b.tau = -generator.pp * generator.tau_el ($RES_SIM_109) (155) [SCAL] (1) inverter2.AC.i[3] + busbar.term.i[3] + meter.term_p.i[3] = 0.0 ($RES_SIM_183) (156) [SCAL] (1) inverter2.AC.i[2] + busbar.term.i[2] + meter.term_p.i[2] = 0.0 ($RES_SIM_184) (157) [SCAL] (1) inverter2.AC.i[1] + busbar.term.i[1] + meter.term_p.i[1] = 0.0 ($RES_SIM_185) (158) [SCAL] (1) inverter2.AC.v[3] = meter.term_p.v[3] ($RES_SIM_186) (159) [SCAL] (1) inverter2.AC.v[3] = busbar.term.v[3] ($RES_SIM_187) (160) [SCAL] (1) inverter2.AC.v[2] = meter.term_p.v[2] ($RES_SIM_188) (161) [SCAL] (1) inverter2.AC.v[2] = busbar.term.v[2] ($RES_SIM_189) (162) [ARRY] (4) busbar.R = $FUN_23 ($RES_BND_241) (163) [ARRY] (3) trafo.top_p.v_cond = trafo.v1 ($RES_BND_242) (164) [SCAL] (1) $TEV_0 = time < windSpeed.startTime ($RES_EVT_278) (165) [ARRY] (3) trafo.top_p.i_cond = trafo.i1 ($RES_BND_243) (166) [SCAL] (1) $TEV_1 = time < (windSpeed.startTime + windSpeed.duration) ($RES_EVT_279) (167) [ARRY] (1) trafo.top_p.v_n = trafo.v_n1 ($RES_BND_244) (168) [SCAL] (1) generator.pp * inertia.flange_b.phi = generator.phi_el ($RES_SIM_110) (169) [ARRY] (3) trafo.top_n.v_cond = 21.73913043478261 .* trafo.v2 ($RES_BND_246) (170) [ARRY] (1) inverter2.heat.ports.Q_flow = -inverter2.Q_flow ($RES_SIM_71) (171) [ARRY] (2) generator.omega = $DER.generator.term.theta ($RES_SIM_111) (172) [ARRY] (3) trafo.top_n.i_cond = 0.046 .* trafo.i2 ($RES_BND_247) (173) [ARRY] (3) generator.i = {generator.Rot_dq[1, 1] * generator.i_s[1] + generator.Rot_dq[1, 2] * generator.i_s[2], generator.Rot_dq[2, 1] * generator.i_s[1] + generator.Rot_dq[2, 2] * generator.i_s[2], generator.i_s[3]} ($RES_SIM_112) (174) [ARRY] (1) trafo.top_n.v_n = trafo.v_n2 ($RES_BND_248) (175) [SCAL] (1) inverter2.iDC0 + 1.7320508075688772 * inverter2.AC.i[3] = 0.0 ($RES_SIM_73) (176) [ARRY] (3) generator.v_s = {generator.Rot_dq[1, 1] * generator.v[1] + generator.Rot_dq[2, 1] * generator.v[2], generator.Rot_dq[1, 2] * generator.v[1] + generator.Rot_dq[2, 2] * generator.v[2], generator.v[3]} ($RES_SIM_113) (177) [SCAL] (1) inverter2.iDC1 + inverter2.switch_dq0 * inverter2.AC.i = 0.0 ($RES_SIM_74) (178) [ARRY] (4) generator.Rot_dq = $FUN_5 ($RES_SIM_114) (179) [ARRY] (3) inverter2.AC.v = inverter2.v_dq0 + {0.0, 0.0, 1.7320508075688772 * inverter2.vDC0} ($RES_SIM_75) (180) [ARRY] (2) generator.heat.ports.Q_flow = -{generator.c.R_s * generator.i_s * generator.i_s, $FUN_3 * generator.i_rd * generator.i_rd + $FUN_4 * generator.i_rq * generator.i_rq} ($RES_SIM_115) (181) [ARRY] (1) inverter2.Q_flow = {inverter2.R_nom * inverter2.par.eps[1] * inverter2.iAC2} ($RES_SIM_76) (182) [SCAL] (1) generator.tau_el = generator.i_s[1:2] * {-generator.psi_s[2], generator.psi_s[1]} ($RES_SIM_116) (183) [ARRY] (3) inverter2.v_dq0 = inverter2.vDC1 * inverter2.switch_dq0 ($RES_SIM_77) (184) [SCAL] (1) inverter2.AC.v[1] = meter.term_p.v[1] ($RES_SIM_190) (185) [ARRY] (1) generator.v_n = generator.c.R_n * generator.i_n ($RES_SIM_117) (186) [ARRY] (3) inverter2.switch_dq0 = 1.224744871391589 * inverter2.vPhasor[1] * {$FUN_7, $FUN_8, 0.0} ($RES_SIM_78) (187) [SCAL] (1) inverter2.AC.v[1] = busbar.term.v[1] ($RES_SIM_191) (188) [ARRY] (1) $DER.generator.psi_rq + $FUN_4 * generator.i_rq = generator.v_rq ($RES_SIM_118) (189) [SCAL] (1) inverter2.phi = inverter2.AC.theta[1] + inverter2.vPhasor[2] ($RES_SIM_79) (190) [SCAL] (1) inverter2.AC.theta[2] = meter.term_p.theta[2] ($RES_SIM_192) (191) [ARRY] (1) $DER.generator.psi_rd + $FUN_3 * generator.i_rd = generator.v_rd ($RES_SIM_119) (192) [SCAL] (1) inverter2.AC.theta[2] = busbar.term.theta[2] ($RES_SIM_193) (193) [SCAL] (1) inverter2.AC.theta[1] = meter.term_p.theta[1] ($RES_SIM_194) (194) [SCAL] (1) inverter2.AC.theta[1] = busbar.term.theta[1] ($RES_SIM_195) (195) [FOR-] (3) ($RES_SIM_197) (195) [----] for $i1 in 1:3 loop (195) [----] [SCAL] (1) line.term_n.i[$i1] + infBus.term.i[$i1] = 0.0 ($RES_SIM_198) (195) [----] end for; (196) [ARRY] (3) line.term_n.v = infBus.term.v ($RES_SIM_199) (197) [ARRY] (1) trafo.i_n1 = trafo.top_p.i_n ($RES_BND_250) (198) [ARRY] (2) line.term_n.theta = infBus.term.theta ($RES_SIM_200) (199) [ARRY] (1) trafo.i_n2 = trafo.top_n.i_n ($RES_BND_251) (200) [ARRY] (2) trafo.dv_tap_pu = (trafo.V_base * trafo.par.dv_tap) / {690.0, 15000.0} ($RES_BND_252) (201) [ARRY] (2) select2.vPhasor_out = inverter2.vPhasor ($RES_SIM_202) (202) [SCAL] (1) trafo.top_p.w = 1.0 + trafo.dv_tap_pu[1] * trafo.tap_1 - trafo.par.tap_neutral[1] ($RES_BND_253) (203) [SCAL] (1) bdCond2.heat.ports[1].Q_flow + inverter2.heat.ports[1].Q_flow = 0.0 ($RES_SIM_203) (204) [SCAL] (1) trafo.top_n.w = 1.0 + trafo.dv_tap_pu[2] * trafo.tap_2 - trafo.par.tap_neutral[2] ($RES_BND_254)