Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries/ --ompython_omhome=/usr OpenIPSL_2.0.0_OpenIPSL.Tests.Controls.PSSE.ES.ESAC1A.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_Synchronous 0.93.0-master/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/OpenIPSL 2.0.0/package.mo", uses=false) Using package OpenIPSL with version 2.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/OpenIPSL 2.0.0/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Using package Modelica_Synchronous with version 0.93.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_Synchronous 0.93.0-master/package.mo) Running command: translateModel(OpenIPSL.Tests.Controls.PSSE.ES.ESAC1A,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="OpenIPSL_2.0.0_OpenIPSL.Tests.Controls.PSSE.ES.ESAC1A") translateModel(OpenIPSL.Tests.Controls.PSSE.ES.ESAC1A,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="OpenIPSL_2.0.0_OpenIPSL.Tests.Controls.PSSE.ES.ESAC1A") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_Synchronous 0.93.0-master/package.mo): time 0.08709/0.08709, allocations: 12.61 MB / 28.88 MB, free: 0.6016 MB / 19.63 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001082/0.001082, allocations: 111.5 kB / 32.48 MB, free: 3.547 MB / 26.18 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.426/1.426, allocations: 205.1 MB / 241.1 MB, free: 12.39 MB / 206.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001466/0.001466, allocations: 195.2 kB / 291.3 MB, free: 13.42 MB / 238.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/OpenIPSL 2.0.0/package.mo): time 0.457/0.457, allocations: 78.5 MB / 419.9 MB, free: 11.27 MB / 302.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.708e-05/2.711e-05, allocations: 2.281 kB / 0.4894 GB, free: 10.22 MB / 382.1 MB Notification: Performance of NFInst.instantiate(OpenIPSL.Tests.Controls.PSSE.ES.ESAC1A): time 0.0102/0.01025, allocations: 9.146 MB / 0.4983 GB, free: 1.02 MB / 382.1 MB Notification: Performance of NFInst.instExpressions: time 0.007322/0.01761, allocations: 2.939 MB / 0.5012 GB, free: 14.07 MB / 398.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.001446/0.01908, allocations: 19.94 kB / 0.5012 GB, free: 14.05 MB / 398.1 MB Notification: Performance of NFTyping.typeComponents: time 0.001347/0.02044, allocations: 357 kB / 0.5015 GB, free: 13.7 MB / 398.1 MB Notification: Performance of NFTyping.typeBindings: time 0.003426/0.02388, allocations: 1.239 MB / 0.5027 GB, free: 12.45 MB / 398.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.002192/0.02608, allocations: 0.9322 MB / 0.5036 GB, free: 11.52 MB / 398.1 MB Notification: Performance of NFFlatten.flatten: time 0.004266/0.03036, allocations: 3.068 MB / 0.5066 GB, free: 8.441 MB / 398.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0007816/0.03115, allocations: 0.5383 MB / 0.5072 GB, free: 7.875 MB / 398.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.001199/0.03236, allocations: 1.031 MB / 0.5082 GB, free: 6.84 MB / 398.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.001336/0.03371, allocations: 1.373 MB / 0.5095 GB, free: 5.461 MB / 398.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0002552/0.03397, allocations: 204 kB / 0.5097 GB, free: 5.262 MB / 398.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.0008953/0.03487, allocations: 495.7 kB / 0.5102 GB, free: 4.777 MB / 398.1 MB Notification: Performance of combineBinaries: time 0.002735/0.03762, allocations: 3.869 MB / 0.514 GB, free: 0.8672 MB / 398.1 MB Notification: Performance of replaceArrayConstructors: time 0.2159/0.2536, allocations: 2.303 MB / 0.5162 GB, free: 56.21 MB / 398.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0009231/0.2545, allocations: 297.6 kB / 0.5165 GB, free: 56.21 MB / 398.1 MB Notification: Performance of FrontEnd: time 0.000481/0.255, allocations: 62.41 kB / 0.5165 GB, free: 56.21 MB / 398.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 283 (262) * Number of variables: 283 (283) Notification: Performance of Bindings: time 0.008173/0.2632, allocations: 10.31 MB / 0.5266 GB, free: 53.02 MB / 398.1 MB Notification: Performance of FunctionAlias: time 0.0007865/0.264, allocations: 0.8759 MB / 0.5275 GB, free: 52.84 MB / 398.1 MB Notification: Performance of Early Inline: time 0.006183/0.2702, allocations: 6.964 MB / 0.5343 GB, free: 50.68 MB / 398.1 MB Notification: Performance of simplify1: time 0.0003862/0.2706, allocations: 325.6 kB / 0.5346 GB, free: 50.55 MB / 398.1 MB Notification: Performance of Alias: time 0.007042/0.2776, allocations: 6.646 MB / 0.5411 GB, free: 46.29 MB / 398.1 MB Notification: Performance of simplify2: time 0.0003227/0.278, allocations: 263.2 kB / 0.5413 GB, free: 46.19 MB / 398.1 MB Notification: Performance of Events: time 0.0009045/0.2789, allocations: 0.9135 MB / 0.5422 GB, free: 45.67 MB / 398.1 MB Notification: Performance of Detect States: time 0.0008793/0.2798, allocations: 1.255 MB / 0.5434 GB, free: 44.91 MB / 398.1 MB Notification: Performance of Partitioning: time 0.001502/0.2813, allocations: 1.509 MB / 0.5449 GB, free: 44.12 MB / 398.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency gENCLS.vd could not be devided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) {{gENCLS.p.vr}, {gENCLS.p.vi}} = {{$FUN_1, $FUN_2}, {-$FUN_2, $FUN_1}} * {{gENCLS.vd}, {gENCLS.vq}} ($RES_SIM_159) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (213/213) **************************** (1) [ALGB] (1) Real pwLine1.vs.im = pwLine.n.vi (2) [ALGB] (1) flow Real pwLine3.p.ii (start = 1e-15) (3) [ALGB] (1) Real pwLine.vs.im = gENROE.p.vi (4) [ALGB] (1) Real pwLine3.n.vi (5) [ALGB] (1) Real pwLine2.P21 (nominal = 1e8) (6) [DISC] (1) Boolean $TEV_9 (7) [DISC] (1) Boolean $TEV_8 (8) [ALGB] (1) flow Real pwLine3.p.ir (start = 1e-15) (9) [ALGB] (1) Real pwLine.Q12 (nominal = 1e8) (10) [DISC] (1) Boolean $TEV_7 (11) [ALGB] (1) Real pwLine3.n.vr (12) [DISC] (1) Boolean $TEV_6 (13) [DER-] (1) Real $DER.eSAC1A.rectifierCommutationVoltageDrop.V_EX (14) [ALGB] (1) flow Real gENCLS.p.ii (start = gENCLS.ii0) (15) [DISC] (1) Boolean $TEV_5 (16) [ALGB] (1) Real eSAC1A.rotatingExciterWithDemagnetization.feedback.y (17) [DISC] (1) Boolean $TEV_4 (18) [ALGB] (1) protected Real eSAC1A.limiter1.simplifiedExpr (19) [DISC] (1) Boolean $TEV_3 (20) [DISC] (1) Boolean $TEV_2 (21) [DISC] (1) Boolean $TEV_1 (22) [DISC] (1) Boolean $TEV_0 (23) [ALGB] (1) Real pwLine1.ir.re = pwLine1.n.ir (24) [ALGB] (1) Real gENCLS.iq (start = gENCLS.iq0) (25) [ALGB] (1) Real pwLine.ir.re = pwLine.n.ir (26) [ALGB] (1) Real pwLine4.Q12 (nominal = 1e8) (27) [ALGB] (1) flow Real gENCLS.p.ir (start = gENCLS.ir0) (28) [ALGB] (1) Real pwLine2.is.re = pwLine2.p.ir (29) [ALGB] (1) Real pwLine2.Q12 (nominal = 1e8) (30) [ALGB] (1) Real gENCLS.id (start = gENCLS.id0) (31) [ALGB] (1) Real pwLine1.vs.re = pwLine.n.vr (32) [ALGB] (1) Real pwLine.vs.re = gENROE.p.vr (33) [ALGB] (1) flow Real pwLine4.n.ii (start = 1e-15) (34) [ALGB] (1) Real gENROE.Te (start = gENROE.pm0) (35) [ALGB] (1) Real eSAC1A.rotatingExciterWithDemagnetization.VE.y (36) [DISC] (1) Boolean $SEV_15 (37) [ALGB] (1) Real pwLine2.ir.im = pwLine2.n.ii (38) [DISC] (1) Boolean $SEV_14 (39) [DISC] (1) Boolean $SEV_13 (40) [ALGB] (1) Real pwLine.P21 (nominal = 1e8) (41) [DISC] (1) Boolean $SEV_12 (42) [ALGB] (1) flow Real pwFault.p.ii (start = 1e-15) (43) [DISC] (1) Boolean $SEV_11 (44) [ALGB] (1) flow Real pwLine4.n.ir (start = 1e-15) (45) [ALGB] (1) Real pwLine3.is.im = pwLine3.p.ii (46) [ALGB] (1) Real pwLine1.vr.im = pwLine1.n.vi (47) [ALGB] (1) Real gENROE.XaqIlq (start = 0.0) (48) [ALGB] (1) Real pwLine.vr.im = pwLine.n.vi (49) [ALGB] (1) flow Real pwFault.p.ir (start = 1e-15) (50) [ALGB] (1) Real pwLine2.vs.im = pwLine1.n.vi (51) [DER-] (1) Real $DER.eSAC1A.simpleLagLim.state (52) [ALGB] (1) Real eSAC1A.rotatingExciterWithDemagnetization.se1.VE_OUT (53) [ALGB] (1) Real pwLine4.Q21 (nominal = 1e8) (54) [ALGB] (1) flow Real pwLine2.p.ii (start = 1e-15) (55) [ALGB] (1) Real gENROE.PELEC (start = gENROE.p0) (56) [DER-] (1) Real $DER.gENCLS.delta (57) [ALGB] (1) Real constantLoad.angle (start = constantLoad.angle_0) (58) [ALGB] (1) Real FAULT.v (start = FAULT.v_0) (59) [ALGB] (1) Real GEN1.angleDisplay = Modelica.SIunits.Conversions.to_deg(0.017453292519943295 * GEN1.angleDisplay) (60) [ALGB] (1) Real GEN2.angleDisplay = Modelica.SIunits.Conversions.to_deg(0.017453292519943295 * GEN2.angleDisplay) (61) [ALGB] (1) flow Real pwLine2.p.ir (start = 1e-15) (62) [ALGB] (1) Real pwLine2.Q21 (nominal = 1e8) (63) [ALGB] (1) flow Real pwLine.p.ii (start = 1e-15) (64) [ALGB] (1) Real pwLine2.ir.re = pwLine2.n.ir (65) [ALGB] (1) Real pwLine.n.vi (66) [ALGB] (1) Real eSAC1A.limiter1.y (67) [ALGB] (1) Real pwLine.P12 (nominal = 1e8) (68) [DER-] (1) Real $DER.gENROE.Epd (69) [ALGB] (1) Real pwLine1.vr.re = pwLine1.n.vr (70) [ALGB] (1) Real pwLine3.is.re = pwLine3.p.ir (71) [ALGB] (1) flow Real pwLine.p.ir (start = 1e-15) (72) [ALGB] (1) Real pwLine.vr.re = pwLine.n.vr (73) [ALGB] (1) Real pwLine.n.vr (74) [ALGB] (1) Real pwLine2.vs.re = pwLine1.n.vr (75) [ALGB] (1) Real eSAC1A.lV_GATE.u1 (76) [DER-] (1) Real $DER.gENROE.Epq (77) [ALGB] (1) Real LOAD.v (start = LOAD.v_0) (78) [DISC] (1) Boolean $TEV_19 (79) [ALGB] (1) Real $FUN_2 (80) [DISC] (1) Boolean $TEV_18 (81) [ALGB] (1) Real pwLine3.ir.im = pwLine3.n.ii (82) [ALGB] (1) flow Real pwLine3.n.ii (start = 1e-15) (83) [ALGB] (1) Real $FUN_1 (84) [DISC] (1) Boolean $TEV_17 (85) [DISC] (1) Boolean $TEV_16 (86) [DISC] (1) Boolean $TEV_15 (87) [ALGB] (1) Real eSAC1A.rectifierCommutationVoltageDrop.fEX.y (88) [DISC] (1) Boolean $TEV_14 (89) [DISC] (1) Boolean $TEV_13 (90) [ALGB] (1) Real eSAC1A.imLeadLag.y (91) [DISC] (1) Boolean $TEV_12 (92) [ALGB] (1) Real eSAC1A.add3_1.y (93) [DISC] (1) Boolean $TEV_11 (94) [ALGB] (1) Real pwLine4.is.im = pwLine4.p.ii (95) [ALGB] (1) Real pwLine2.vr.im = gENCLS.p.vi (96) [ALGB] (1) Real pwLine3.P12 (nominal = 1e8) (97) [DISC] (1) Boolean $TEV_10 (98) [ALGB] (1) flow Real pwLine3.n.ir (start = 1e-15) (99) [ALGB] (1) Real eSAC1A.rotatingExciterWithDemagnetization.gain.y (100) [ALGB] (1) Real gENROE.ISORCE (101) [ALGB] (1) Real pwLine3.vs.im = pwLine.n.vi (102) [ALGB] (1) Real gENROE.iq (start = gENROE.iq0) (103) [ALGB] (1) Real gENCLS.vq (start = gENCLS.vq0) (104) [ALGB] (1) Real pwLine1.P12 (nominal = 1e8) (105) [ALGB] (1) flow Real pwLine1.p.ii (start = 1e-15) (106) [ALGB] (1) Real pwLine1.n.vi (107) [ALGB] (1) Real gENROE.id (start = gENROE.id0) (108) [ALGB] (1) Real $FUN_19 (109) [ALGB] (1) flow Real pwLine1.p.ir (start = 1e-15) (110) [ALGB] (1) Real $FUN_18 (111) [ALGB] (1) Real pwLine1.n.vr (112) [ALGB] (1) Real constantLoad.v (start = constantLoad.v_0) (113) [ALGB] (1) Real gENCLS.vd (start = gENCLS.vd0) (114) [ALGB] (1) Real pwLine3.ir.re = pwLine3.n.ir (115) [ALGB] (1) Real SHUNT.v (start = SHUNT.v_0) (116) [ALGB] (1) Real pwLine2.vr.re = gENCLS.p.vr (117) [ALGB] (1) Real pwLine3.P21 (nominal = 1e8) (118) [ALGB] (1) Real gENROE.p.vi (start = gENROE.vi0) (119) [ALGB] (1) Real pwLine4.is.re = pwLine4.p.ir (120) [DISC] (1) Boolean $SEV_9 (121) [DISC] (1) Boolean $SEV_8 (122) [ALGB] (1) Real pwLine3.vs.re = pwLine.n.vr (123) [ALGB] (1) Real eSAC1A.simpleLagLim.y (start = eSAC1A.simpleLagLim.y_start) (124) [DISC] (1) Boolean $SEV_7 (125) [DISC] (1) Boolean $SEV_6 (126) [ALGB] (1) Real gENROE.p.vr (start = gENROE.vr0) (127) [DISC] (1) Boolean $SEV_5 (128) [DISC] (1) Boolean $SEV_4 (129) [ALGB] (1) Real pwLine4.ir.im = pwLine4.n.ii (130) [ALGB] (1) Real GEN2.v (start = GEN2.v_0) (131) [ALGB] (1) Real pwLine1.P21 (nominal = 1e8) (132) [ALGB] (1) Real eSAC1A.derivative.u (133) [DISC] (1) Boolean $SEV_3 (134) [DISC] (1) Boolean $SEV_2 (135) [DISC] (1) Boolean $SEV_1 (136) [ALGB] (1) flow Real pwLine2.n.ii (start = 1e-15) (137) [DISC] (1) Boolean $SEV_0 (138) [ALGB] (1) Real eSAC1A.derivative.y (139) [ALGB] (1) Real pwLine3.vr.im = pwLine3.n.vi (140) [ALGB] (1) flow Real pwLine2.n.ir (start = 1e-15) (141) [ALGB] (1) Real pwLine4.vs.im = pwLine3.n.vi (142) [ALGB] (1) Real SHUNT.angleDisplay = Modelica.SIunits.Conversions.to_deg(0.017453292519943295 * SHUNT.angleDisplay) (143) [ALGB] (1) flow Real pwLine.n.ii (start = 1e-15) (144) [ALGB] (1) Real constantLoad.Q (145) [ALGB] (1) Real pwLine3.Q12 (nominal = 1e8) (146) [ALGB] (1) Real constantLoad.P (147) [ALGB] (1) Real gENROE.Q (start = gENROE.Q_0 / gENROE.S_b) (148) [ALGB] (1) Real gENROE.P (start = gENROE.P_0 / gENROE.S_b) (149) [DER-] (1) Real[1] $DER.eSAC1A.imLeadLag.TF.x_scaled (150) [DER-] (1) Real $DER.gENROE.PSIkq (151) [ALGB] (1) flow Real pwLine.n.ir (start = 1e-15) (152) [ALGB] (1) Real pwLine1.Q12 (nominal = 1e8) (153) [ALGB] (1) Real gENROE.I (start = sqrt(gENROE.ii0 ^ 2.0 + gENROE.ir0 ^ 2.0)) (154) [ALGB] (1) Real pwLine4.ir.re = pwLine4.n.ir (155) [DER-] (1) Real $DER.gENROE.delta (156) [DER-] (1) Real $DER.gENROE.PSIkd (157) [ALGB] (1) Real pwLine3.vr.re = pwLine3.n.vr (158) [ALGB] (1) Real gENROE.anglev (start = gENROE.angle_0) (159) [ALGB] (1) Real pwLine4.vs.re = pwLine3.n.vr (160) [ALGB] (1) Real gENCLS.p.vi (start = gENCLS.vi0) (161) [ALGB] (1) Real pwLine3.Q21 (nominal = 1e8) (162) [DER-] (1) Real $DER.eSAC1A.derivative.x (163) [ALGB] (1) flow Real pwLine1.n.ii (start = 1e-15) (164) [ALGB] (1) Real gENCLS.p.vr (start = gENCLS.vr0) (165) [ALGB] (1) protected Real constantLoad.kP (start = 1.0) (166) [ALGB] (1) Real pwLine4.vr.im = gENCLS.p.vi (167) [ALGB] (1) Real gENROE.anglei (start = atan2(gENROE.ii0, gENROE.ir0)) (168) [ALGB] (1) Real gENROE.PSIppq (start = gENROE.PSIppq0) (169) [ALGB] (1) Real FAULT.angleDisplay = Modelica.SIunits.Conversions.to_deg(0.017453292519943295 * FAULT.angleDisplay) (170) [ALGB] (1) Real pwLine1.Q21 (nominal = 1e8) (171) [ALGB] (1) Real gENROE.EFD (start = gENROE.efd0) (172) [ALGB] (1) Real GEN1.v (start = GEN1.v_0) (173) [ALGB] (1) Real LOAD.angleDisplay = Modelica.SIunits.Conversions.to_deg(0.017453292519943295 * LOAD.angleDisplay) (174) [ALGB] (1) protected Real constantLoad.kI (start = 1.0) (175) [ALGB] (1) Real pwLine1.is.im = pwLine1.p.ii (176) [ALGB] (1) Real pwLine.is.im = pwLine.p.ii (177) [ALGB] (1) flow Real pwLine1.n.ir (start = 1e-15) (178) [ALGB] (1) flow Real pwLine4.p.ii (start = 1e-15) (179) [DER-] (1) Real $DER.gENCLS.eq (180) [ALGB] (1) Real gENROE.PSIppd (start = gENROE.PSIppd0) (181) [ALGB] (1) flow Real gENROE.p.ii (start = gENROE.ii0) (182) [ALGB] (1) Real gENROE.Vt (start = gENROE.v_0) (183) [DER-] (1) Real $DER.gENROE.w (184) [ALGB] (1) Real gENROE.PSId (start = gENROE.PSId0) (185) [ALGB] (1) flow Real pwLine4.p.ir (start = 1e-15) (186) [ALGB] (1) Real eSAC1A.imSimpleLag.y (start = eSAC1A.imSimpleLag.y_start) (187) [ALGB] (1) Real pwLine4.P12 (nominal = 1e8) (188) [ALGB] (1) flow Real constantLoad.p.ii (start = constantLoad.ii0) (189) [ALGB] (1) Real gENROE.uq (start = gENROE.uq0) (190) [ALGB] (1) flow Real gENROE.p.ir (start = gENROE.ir0) (191) [ALGB] (1) Real gENROE.PSIpp (192) [ALGB] (1) flow Real constantLoad.p.ir (start = constantLoad.ir0) (193) [ALGB] (1) Real pwLine4.vr.re = gENCLS.p.vr (194) [ALGB] (1) Real gENROE.PSIq (start = gENROE.PSIq0) (195) [ALGB] (1) Real eSAC1A.DiffV.y (196) [ALGB] (1) Real pwLine2.P12 (nominal = 1e8) (197) [ALGB] (1) Real eSAC1A.rectifierCommutationVoltageDrop.gain2.y (198) [ALGB] (1) Real gENROE.ud (start = gENROE.ud0) (199) [DER-] (1) Real $DER.eSAC1A.imSimpleLag.state (200) [ALGB] (1) Real pwLine1.is.re = pwLine1.p.ir (201) [ALGB] (1) Real pwLine.is.re = pwLine.p.ir (202) [ALGB] (1) Real pwLine.Q21 (nominal = 1e8) (203) [ALGB] (1) Real gENCLS.anglev (start = gENCLS.angle_0) (204) [ALGB] (1) Real pwLine1.ir.im = pwLine1.n.ii (205) [ALGB] (1) Real gENCLS.V (start = gENCLS.v_0) (206) [ALGB] (1) Real pwLine.ir.im = pwLine.n.ii (207) [ALGB] (1) Real[1] eSAC1A.imLeadLag.TF.x (start = eSAC1A.imLeadLag.TF.x_start) (208) [ALGB] (1) Real eSAC1A.imLeadLag.TF.y (209) [ALGB] (1) Real pwLine4.P21 (nominal = 1e8) (210) [ALGB] (1) Real eSAC1A.rectifierCommutationVoltageDrop.division.y (211) [ALGB] (1) Real gENCLS.Q (start = gENCLS.Q_0 / gENCLS.S_b) (212) [ALGB] (1) Real gENCLS.P (start = gENCLS.P_0 / gENCLS.S_b) (213) [ALGB] (1) Real pwLine2.is.im = pwLine2.p.ii System Equations (192/213) **************************** (1) [SCAL] (1) -gENROE.PSIppq = -(gENROE.Epd * gENROE.K3q + gENROE.PSIkq * gENROE.K4q) ($RES_SIM_80) (2) [SCAL] (1) gENROE.PSIppd = gENROE.Epq * gENROE.K3d + gENROE.PSIkd * gENROE.K4d ($RES_SIM_81) (3) [SCAL] (1) gENROE.PSIq = -(gENROE.PSIppq + gENROE.Xppq * gENROE.iq) ($RES_SIM_82) (4) [SCAL] (1) gENROE.PSId = gENROE.PSIppd - gENROE.Xppd * gENROE.id ($RES_SIM_83) (5) [SCAL] (1) gENROE.Te = gENROE.PSId * gENROE.iq - gENROE.PSIq * gENROE.id ($RES_SIM_84) (6) [SCAL] (1) $DER.gENROE.PSIkq = (1/gENROE.Tppq0) * ((gENROE.Epd + (gENROE.Xpq - gENROE.Xl) * gENROE.iq) - gENROE.PSIkq) ($RES_SIM_85) (7) [SCAL] (1) $DER.gENROE.PSIkd = (1/gENROE.Tppd0) * (gENROE.Epq - ((gENROE.Xpd - gENROE.Xl) * gENROE.id + gENROE.PSIkd)) ($RES_SIM_86) (8) [SCAL] (1) $DER.gENROE.Epd = -(1/gENROE.Tpq0) * gENROE.XaqIlq ($RES_SIM_87) (9) [SCAL] (1) $DER.gENROE.Epq = (1/gENROE.Tpd0) * (gENROE.EFD - gENROE.ISORCE) ($RES_SIM_88) (10) [SCAL] (1) $TEV_7 = time < pwFault.t2 ($RES_EVT_370) (11) [SCAL] (1) $TEV_8 = time >= constantLoad.t1 ($RES_EVT_371) (12) [SCAL] (1) $TEV_9 = time <= (constantLoad.t1 + constantLoad.d_t) ($RES_EVT_372) (13) [SCAL] (1) $TEV_10 = $TEV_8 and $TEV_9 ($RES_EVT_373) (14) [SCAL] (1) $TEV_11 = time >= pwLine4.t1 ($RES_EVT_374) (15) [SCAL] (1) $TEV_12 = time < pwLine4.t2 ($RES_EVT_375) (16) [SCAL] (1) $TEV_13 = $TEV_11 and $TEV_12 ($RES_EVT_376) (17) [SCAL] (1) $TEV_14 = time >= pwLine3.t1 ($RES_EVT_377) (18) [SCAL] (1) $TEV_15 = time < pwLine3.t2 ($RES_EVT_378) (19) [SCAL] (1) $TEV_16 = $TEV_14 and $TEV_15 ($RES_EVT_379) (20) [SCAL] (1) eSAC1A.rectifierCommutationVoltageDrop.division.y = eSAC1A.rectifierCommutationVoltageDrop.gain2.y / eSAC1A.rectifierCommutationVoltageDrop.V_EX ($RES_SIM_16) (21) [SCAL] (1) gENROE.EFD = eSAC1A.rectifierCommutationVoltageDrop.V_EX * eSAC1A.rectifierCommutationVoltageDrop.fEX.y ($RES_SIM_17) (22) [-IF-] (2)if $TEV_6 then (22) [----] [SCAL] (1) pwFault.p.ir = 0.0 ($RES_SIM_132) (22) [----] [SCAL] (1) pwFault.p.ii = 0.0 ($RES_SIM_133) (22) [----] elseif $SEV_13 then (22) [----] [SCAL] (1) pwLine3.n.vi = 0.0 ($RES_SIM_134) (22) [----] [SCAL] (1) pwLine3.n.vr = 1e-10 ($RES_SIM_135) (22) [----] elseif $TEV_7 then (22) [----] [SCAL] (1) pwFault.p.ir = (pwFault.R * pwLine3.n.vr + pwFault.X * pwLine3.n.vi) / (pwFault.R * pwFault.R + pwFault.X * pwFault.X) ($RES_SIM_136) (22) [----] [SCAL] (1) pwFault.p.ii = (pwFault.R * pwLine3.n.vi - pwFault.X * pwLine3.n.vr) / (pwFault.X * pwFault.X + pwFault.R * pwFault.R) ($RES_SIM_137) (22) [----] else (22) [----] [SCAL] (1) pwFault.p.ir = 0.0 ($RES_SIM_138) (22) [----] [SCAL] (1) pwFault.p.ii = 0.0 ($RES_SIM_139) (22) [----] end if; (23) [-IF-] (1)if $SEV_0 then (23) [----] [SCAL] (1) eSAC1A.rectifierCommutationVoltageDrop.fEX.y = 1.0 ($RES_SIM_19) (23) [----] elseif $SEV_1 then (23) [----] [SCAL] (1) eSAC1A.rectifierCommutationVoltageDrop.fEX.y = 1.0 - 0.577 * eSAC1A.rectifierCommutationVoltageDrop.division.y ($RES_SIM_20) (23) [----] elseif $SEV_2 then (23) [----] [SCAL] (1) eSAC1A.rectifierCommutationVoltageDrop.fEX.y = sqrt(0.75 - eSAC1A.rectifierCommutationVoltageDrop.division.y ^ 2.0) ($RES_SIM_21) (23) [----] elseif $SEV_3 then (23) [----] [SCAL] (1) eSAC1A.rectifierCommutationVoltageDrop.fEX.y = 1.732 * (1.0 - eSAC1A.rectifierCommutationVoltageDrop.division.y) ($RES_SIM_22) (23) [----] else (23) [----] [SCAL] (1) eSAC1A.rectifierCommutationVoltageDrop.fEX.y = 0.0 ($RES_SIM_23) (23) [----] end if; (24) [-IF-] (4)if $TEV_2 then (24) [----] [RECD] (2) pwLine2.ir = Complex(0.0, 0.0) ($RES_SIM_98) (24) [----] [RECD] (2) pwLine2.is = Complex(0.0, 0.0) ($RES_SIM_99) (24) [----] else (24) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine2.vr.re - pwLine2.vs.re, pwLine2.vr.im - pwLine2.vs.im) = Complex.'constructor'.fromReal(pwLine2.Z.re * ((pwLine2.ir.re + pwLine2.vr.im * pwLine2.Y.im) - pwLine2.vr.re * pwLine2.Y.re) - pwLine2.Z.im * (pwLine2.ir.im - (pwLine2.vr.re * pwLine2.Y.im + pwLine2.vr.im * pwLine2.Y.re)), pwLine2.Z.re * (pwLine2.ir.im - (pwLine2.vr.re * pwLine2.Y.im + pwLine2.vr.im * pwLine2.Y.re)) + pwLine2.Z.im * ((pwLine2.ir.re + pwLine2.vr.im * pwLine2.Y.im) - pwLine2.vr.re * pwLine2.Y.re)) ($RES_SIM_100) (24) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine2.vs.re - pwLine2.vr.re, pwLine2.vs.im - pwLine2.vr.im) = Complex.'constructor'.fromReal(pwLine2.Z.re * ((pwLine2.is.re + pwLine2.vs.im * pwLine2.Y.im) - pwLine2.vs.re * pwLine2.Y.re) - pwLine2.Z.im * (pwLine2.is.im - (pwLine2.vs.re * pwLine2.Y.im + pwLine2.vs.im * pwLine2.Y.re)), pwLine2.Z.re * (pwLine2.is.im - (pwLine2.vs.re * pwLine2.Y.im + pwLine2.vs.im * pwLine2.Y.re)) + pwLine2.Z.im * ((pwLine2.is.re + pwLine2.vs.im * pwLine2.Y.im) - pwLine2.vs.re * pwLine2.Y.re)) ($RES_SIM_101) (24) [----] end if; (25) [SCAL] (1) $FUN_1 = sin(gENCLS.delta) ($RES_$AUX_350) (26) [SCAL] (1) $TEV_17 = time >= pwLine.t1 ($RES_EVT_380) (27) [SCAL] (1) $TEV_18 = time < pwLine.t2 ($RES_EVT_381) (28) [SCAL] (1) $TEV_19 = $TEV_17 and $TEV_18 ($RES_EVT_382) (29) [SCAL] (1) $SEV_0 = eSAC1A.rectifierCommutationVoltageDrop.division.y <= 0.0 ($RES_EVT_383) (30) [SCAL] (1) $SEV_1 = eSAC1A.rectifierCommutationVoltageDrop.division.y > 0.0 and eSAC1A.rectifierCommutationVoltageDrop.division.y <= 0.433 ($RES_EVT_384) (31) [SCAL] (1) $SEV_2 = eSAC1A.rectifierCommutationVoltageDrop.division.y > 0.433 and eSAC1A.rectifierCommutationVoltageDrop.division.y < 0.75 ($RES_EVT_385) (32) [SCAL] (1) $SEV_3 = eSAC1A.rectifierCommutationVoltageDrop.division.y >= 0.75 and eSAC1A.rectifierCommutationVoltageDrop.division.y <= 1.0 ($RES_EVT_386) (33) [SCAL] (1) $SEV_4 = eSAC1A.rectifierCommutationVoltageDrop.V_EX < eSAC1A.rotatingExciterWithDemagnetization.sISO.outMin and eSAC1A.rotatingExciterWithDemagnetization.sISO.k * eSAC1A.rotatingExciterWithDemagnetization.feedback.y < 0.0 or eSAC1A.rectifierCommutationVoltageDrop.V_EX > eSAC1A.rotatingExciterWithDemagnetization.sISO.outMax and eSAC1A.rotatingExciterWithDemagnetization.sISO.k * eSAC1A.rotatingExciterWithDemagnetization.feedback.y > 0.0 ($RES_EVT_387) (34) [SCAL] (1) $SEV_5 = abs(eSAC1A.simpleLagLim.T) <= 1e-15 ($RES_EVT_388) (35) [SCAL] (1) $SEV_6 = eSAC1A.simpleLagLim.state < eSAC1A.simpleLagLim.outMin and eSAC1A.simpleLagLim.K * eSAC1A.simpleLagLim.u - eSAC1A.simpleLagLim.state > 0.0 ($RES_EVT_389) (36) [SCAL] (1) eSAC1A.rectifierCommutationVoltageDrop.gain2.y = eSAC1A.rectifierCommutationVoltageDrop.gain2.k * gENROE.ISORCE ($RES_SIM_24) (37) [SCAL] (1) eSAC1A.add3_1.y = eSAC1A.add3_1.k2 * eSAC1A.DiffV.y + eSAC1A.add3_1.k1 * zero.k + eSAC1A.add3_1.k3 * eSAC1A.derivative.y ($RES_SIM_25) (38) [SCAL] (1) $DER.eSAC1A.rectifierCommutationVoltageDrop.V_EX = if $SEV_4 then 0.0 else eSAC1A.rotatingExciterWithDemagnetization.sISO.k * eSAC1A.rotatingExciterWithDemagnetization.feedback.y ($RES_SIM_26) (39) [-IF-] (1)if $SEV_14 then (39) [----] [SCAL] (1) constantLoad.kI = constantLoad.v ^ (constantLoad.b2 - 1.0) * constantLoad.b2 * constantLoad.a2 * exp(-constantLoad.a2 * constantLoad.v ^ constantLoad.b2) ($RES_SIM_141) (39) [----] else (39) [----] [SCAL] (1) constantLoad.kI = 1.0 ($RES_SIM_142) (39) [----] end if; (40) [SCAL] (1) eSAC1A.rotatingExciterWithDemagnetization.feedback.y = eSAC1A.limiter1.y - eSAC1A.derivative.u ($RES_SIM_29) (41) [SCAL] (1) pwLine.vs.im = gENROE.p.vi ($RES_BND_278) (42) [-IF-] (1)if $SEV_15 then (42) [----] [SCAL] (1) constantLoad.kP = constantLoad.a1 * cos(constantLoad.v * constantLoad.wp) + constantLoad.a0 + constantLoad.b1 * sin(constantLoad.v * constantLoad.wp) ($RES_SIM_144) (42) [----] else (42) [----] [SCAL] (1) constantLoad.kP = 1.0 ($RES_SIM_145) (42) [----] end if; (43) [SCAL] (1) pwLine.vs.re = gENROE.p.vr ($RES_BND_279) (44) [SCAL] (1) $FUN_2 = cos(gENCLS.delta) ($RES_$AUX_349) (45) [SCAL] (1) constantLoad.Q = pwLine.n.vi * constantLoad.p.ir - pwLine.n.vr * constantLoad.p.ii ($RES_SIM_148) (46) [SCAL] (1) gENCLS.V = sqrt(gENCLS.p.vr ^ 2.0 + gENCLS.p.vi ^ 2.0) ($RES_$AUX_348) (47) [SCAL] (1) constantLoad.P = pwLine.n.vr * constantLoad.p.ir + pwLine.n.vi * constantLoad.p.ii ($RES_SIM_149) (48) [SCAL] (1) gENCLS.anglev = atan2(gENCLS.p.vi, gENCLS.p.vr) ($RES_$AUX_347) (49) [SCAL] (1) constantLoad.angle = atan2(pwLine.n.vi, pwLine.n.vr) ($RES_$AUX_346) (50) [SCAL] (1) constantLoad.v = sqrt(pwLine.n.vr ^ 2.0 + pwLine.n.vi ^ 2.0) ($RES_$AUX_345) (51) [SCAL] (1) GEN1.v = sqrt(gENROE.p.vr ^ 2.0 + gENROE.p.vi ^ 2.0) ($RES_$AUX_344) (52) [SCAL] (1) 0.017453292519943295 * GEN1.angleDisplay = atan2(gENROE.p.vi, gENROE.p.vr) ($RES_$AUX_343) (53) [SCAL] (1) LOAD.v = sqrt(pwLine.n.vr ^ 2.0 + pwLine.n.vi ^ 2.0) ($RES_$AUX_342) (54) [SCAL] (1) 0.017453292519943295 * LOAD.angleDisplay = atan2(pwLine.n.vi, pwLine.n.vr) ($RES_$AUX_341) (55) [SCAL] (1) GEN2.v = sqrt(gENCLS.p.vr ^ 2.0 + gENCLS.p.vi ^ 2.0) ($RES_$AUX_340) (56) [SCAL] (1) $SEV_7 = eSAC1A.simpleLagLim.state > eSAC1A.simpleLagLim.outMax and eSAC1A.simpleLagLim.K * eSAC1A.simpleLagLim.u - eSAC1A.simpleLagLim.state < 0.0 ($RES_EVT_390) (57) [SCAL] (1) $SEV_8 = eSAC1A.limiter1.simplifiedExpr > eSAC1A.limiter1.uMax ($RES_EVT_391) (58) [SCAL] (1) $SEV_9 = eSAC1A.limiter1.simplifiedExpr < eSAC1A.limiter1.uMin ($RES_EVT_392) (59) [SCAL] (1) $SEV_11 = abs(eSAC1A.imSimpleLag.T) <= 1e-15 ($RES_EVT_394) (60) [SCAL] (1) $SEV_12 = abs(eSAC1A.imLeadLag.T1 - eSAC1A.imLeadLag.T2) < 1e-15 ($RES_EVT_395) (61) [SCAL] (1) $SEV_13 = time < pwFault.t2 and pwFault.ground ($RES_EVT_396) (62) [SCAL] (1) $SEV_14 = constantLoad.v < 0.5 ($RES_EVT_397) (63) [SCAL] (1) $SEV_15 = constantLoad.v < constantLoad.PQBRAK ($RES_EVT_398) (64) [SCAL] (1) eSAC1A.rotatingExciterWithDemagnetization.VE.y = eSAC1A.rectifierCommutationVoltageDrop.V_EX * eSAC1A.rotatingExciterWithDemagnetization.se1.VE_OUT ($RES_SIM_31) (65) [SCAL] (1) pwLine.is.im = pwLine.p.ii ($RES_BND_280) (66) [SCAL] (1) eSAC1A.derivative.u = eSAC1A.rotatingExciterWithDemagnetization.Sum.k2 * eSAC1A.rotatingExciterWithDemagnetization.gain.y + eSAC1A.rotatingExciterWithDemagnetization.Sum.k1 * eSAC1A.rotatingExciterWithDemagnetization.VE.y + eSAC1A.rotatingExciterWithDemagnetization.Sum.k3 * gENROE.ISORCE ($RES_SIM_32) (67) [SCAL] (1) pwLine.is.re = pwLine.p.ir ($RES_BND_281) (68) [SCAL] (1) eSAC1A.rotatingExciterWithDemagnetization.gain.y = eSAC1A.rotatingExciterWithDemagnetization.gain.k * eSAC1A.rectifierCommutationVoltageDrop.V_EX ($RES_SIM_33) (69) [SCAL] (1) pwLine.vr.im = pwLine.n.vi ($RES_BND_282) (70) [SCAL] (1) pwLine.vr.re = pwLine.n.vr ($RES_BND_283) (71) [SCAL] (1) eSAC1A.derivative.y = (eSAC1A.derivative.k / eSAC1A.derivative.T) * (eSAC1A.derivative.u - eSAC1A.derivative.x) ($RES_SIM_34) (72) [SCAL] (1) pwLine.ir.im = pwLine.n.ii ($RES_BND_284) (73) [SCAL] (1) $DER.eSAC1A.derivative.x = (eSAC1A.derivative.u - eSAC1A.derivative.x) / eSAC1A.derivative.T ($RES_SIM_35) (74) [SCAL] (1) pwLine.ir.re = pwLine.n.ir ($RES_BND_285) (75) [-IF-] (1)if $SEV_5 then (75) [----] [SCAL] (1) eSAC1A.simpleLagLim.y = max(min(eSAC1A.imLeadLag.y * eSAC1A.simpleLagLim.K, eSAC1A.simpleLagLim.outMax), eSAC1A.simpleLagLim.outMin) ($RES_SIM_37) (75) [----] else (75) [----] [SCAL] (1) eSAC1A.simpleLagLim.y = max(min(eSAC1A.simpleLagLim.state, eSAC1A.simpleLagLim.outMax), eSAC1A.simpleLagLim.outMin) ($RES_SIM_38) (75) [----] end if; (76) [SCAL] (1) pwLine3.vs.im = pwLine.n.vi ($RES_BND_286) (77) [-IF-] (2)if $TEV_10 then (77) [----] [SCAL] (1) constantLoad.S_Y.im * constantLoad.v ^ 2.0 + constantLoad.S_I.im * constantLoad.kI * constantLoad.v + constantLoad.kP * (constantLoad.S_P.im + constantLoad.d_Q) = pwLine.n.vi * constantLoad.p.ir - pwLine.n.vr * constantLoad.p.ii ($RES_SIM_151) (77) [----] [SCAL] (1) constantLoad.S_Y.re * constantLoad.v ^ 2.0 + constantLoad.S_I.re * constantLoad.kI * constantLoad.v + constantLoad.kP * (constantLoad.S_P.re + constantLoad.d_P) = pwLine.n.vr * constantLoad.p.ir + pwLine.n.vi * constantLoad.p.ii ($RES_SIM_152) (77) [----] else (77) [----] [SCAL] (1) constantLoad.S_Y.im * constantLoad.v ^ 2.0 + constantLoad.S_I.im * constantLoad.kI * constantLoad.v + constantLoad.kP * constantLoad.S_P.im = pwLine.n.vi * constantLoad.p.ir - pwLine.n.vr * constantLoad.p.ii ($RES_SIM_153) (77) [----] [SCAL] (1) constantLoad.S_Y.re * constantLoad.v ^ 2.0 + constantLoad.S_I.re * constantLoad.kI * constantLoad.v + constantLoad.kP * constantLoad.S_P.re = pwLine.n.vr * constantLoad.p.ir + pwLine.n.vi * constantLoad.p.ii ($RES_SIM_154) (77) [----] end if; (78) [SCAL] (1) pwLine3.vs.re = pwLine.n.vr ($RES_BND_287) (79) [SCAL] (1) pwLine3.is.im = pwLine3.p.ii ($RES_BND_288) (80) [SCAL] (1) pwLine3.is.re = pwLine3.p.ir ($RES_BND_289) (81) [SCAL] (1) -gENCLS.Q = gENCLS.p.vi * gENCLS.p.ir - gENCLS.p.vr * gENCLS.p.ii ($RES_SIM_157) (82) [SCAL] (1) 0.017453292519943295 * GEN2.angleDisplay = atan2(gENCLS.p.vi, gENCLS.p.vr) ($RES_$AUX_339) (83) [SCAL] (1) -gENCLS.P = gENCLS.p.vr * gENCLS.p.ir + gENCLS.p.vi * gENCLS.p.ii ($RES_SIM_158) (84) [SCAL] (1) FAULT.v = sqrt(pwLine3.n.vr ^ 2.0 + pwLine3.n.vi ^ 2.0) ($RES_$AUX_338) (85) [ARRY] (2) {{gENCLS.p.vr}, {gENCLS.p.vi}} = {{$FUN_1, $FUN_2}, {-$FUN_2, $FUN_1}} * {{gENCLS.vd}, {gENCLS.vq}} ($RES_SIM_159) (86) [SCAL] (1) 0.017453292519943295 * FAULT.angleDisplay = atan2(pwLine3.n.vi, pwLine3.n.vr) ($RES_$AUX_337) (87) [SCAL] (1) SHUNT.v = sqrt(pwLine1.n.vr ^ 2.0 + pwLine1.n.vi ^ 2.0) ($RES_$AUX_336) (88) [SCAL] (1) 0.017453292519943295 * SHUNT.angleDisplay = atan2(pwLine1.n.vi, pwLine1.n.vr) ($RES_$AUX_335) (89) [SCAL] (1) gENROE.PSIpp = sqrt(gENROE.PSIppd * gENROE.PSIppd + gENROE.PSIppq * gENROE.PSIppq) ($RES_$AUX_334) (90) [SCAL] (1) $FUN_18 = sin(gENROE.delta) ($RES_$AUX_333) (91) [SCAL] (1) $FUN_19 = cos(gENROE.delta) ($RES_$AUX_332) (92) [SCAL] (1) gENROE.Vt = sqrt(gENROE.p.vr ^ 2.0 + gENROE.p.vi ^ 2.0) ($RES_$AUX_331) (93) [SCAL] (1) gENROE.anglev = atan2(gENROE.p.vi, gENROE.p.vr) ($RES_$AUX_330) (94) [SCAL] (1) eSAC1A.simpleLagLim.T_mod * $DER.eSAC1A.simpleLagLim.state = eSAC1A.simpleLagLim.K * eSAC1A.imLeadLag.y - eSAC1A.simpleLagLim.state ($RES_SIM_40) (95) [SCAL] (1) pwLine3.vr.im = pwLine3.n.vi ($RES_BND_290) (96) [SCAL] (1) eSAC1A.limiter1.y = homotopy(smooth(0, if $SEV_8 then eSAC1A.limiter1.uMax else if $SEV_9 then eSAC1A.limiter1.uMin else eSAC1A.limiter1.simplifiedExpr), eSAC1A.limiter1.simplifiedExpr) ($RES_SIM_41) (97) [SCAL] (1) pwLine3.vr.re = pwLine3.n.vr ($RES_BND_291) (98) [SCAL] (1) pwLine3.ir.im = pwLine3.n.ii ($RES_BND_292) (99) [SCAL] (1) pwLine3.ir.re = pwLine3.n.ir ($RES_BND_293) (100) [-IF-] (1)if $SEV_11 then (100) [----] [SCAL] (1) eSAC1A.imSimpleLag.y = gENROE.Vt * eSAC1A.imSimpleLag.K ($RES_SIM_45) (100) [----] else (100) [----] [SCAL] (1) eSAC1A.imSimpleLag.y = eSAC1A.imSimpleLag.state ($RES_SIM_46) (100) [----] end if; (101) [SCAL] (1) pwLine4.vs.im = pwLine3.n.vi ($RES_BND_294) (102) [SCAL] (1) pwLine4.vs.re = pwLine3.n.vr ($RES_BND_295) (103) [SCAL] (1) pwLine4.is.im = pwLine4.p.ii ($RES_BND_296) (104) [SCAL] (1) eSAC1A.imSimpleLag.T_mod * $DER.eSAC1A.imSimpleLag.state = eSAC1A.imSimpleLag.K * gENROE.Vt - eSAC1A.imSimpleLag.state ($RES_SIM_47) (105) [ARRY] (2) {{gENCLS.p.ir}, {gENCLS.p.ii}} = -gENCLS.CoB * {{$FUN_1, $FUN_2}, {-$FUN_2, $FUN_1}} * {{gENCLS.id}, {gENCLS.iq}} ($RES_SIM_160) (106) [SCAL] (1) pwLine4.is.re = pwLine4.p.ir ($RES_BND_297) (107) [-IF-] (1)if $SEV_12 then (107) [----] [SCAL] (1) eSAC1A.imLeadLag.y = eSAC1A.imLeadLag.K * eSAC1A.add3_1.y ($RES_SIM_49) (107) [----] else (107) [----] [SCAL] (1) eSAC1A.imLeadLag.y = eSAC1A.imLeadLag.TF.y ($RES_SIM_50) (107) [----] end if; (108) [SCAL] (1) gENCLS.vd = gENCLS.X_d * gENCLS.iq - gENCLS.R_a * gENCLS.id ($RES_SIM_161) (109) [SCAL] (1) pwLine4.vr.im = gENCLS.p.vi ($RES_BND_298) (110) [SCAL] (1) gENCLS.vq = gENCLS.eq - (gENCLS.X_d * gENCLS.id + gENCLS.R_a * gENCLS.iq) ($RES_SIM_162) (111) [SCAL] (1) pwLine4.vr.re = gENCLS.p.vr ($RES_BND_299) (112) [SCAL] (1) $DER.gENCLS.eq = 0.0 ($RES_SIM_163) (113) [SCAL] (1) $DER.gENCLS.delta = 0.0 ($RES_SIM_165) (114) [-IF-] (4)if $TEV_13 then (114) [----] [RECD] (2) pwLine4.ir = Complex(0.0, 0.0) ($RES_SIM_167) (114) [----] [RECD] (2) pwLine4.is = Complex(0.0, 0.0) ($RES_SIM_168) (114) [----] else (114) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine4.vr.re - pwLine4.vs.re, pwLine4.vr.im - pwLine4.vs.im) = Complex.'constructor'.fromReal(pwLine4.Z.re * ((pwLine4.ir.re + pwLine4.vr.im * pwLine4.Y.im) - pwLine4.vr.re * pwLine4.Y.re) - pwLine4.Z.im * (pwLine4.ir.im - (pwLine4.vr.re * pwLine4.Y.im + pwLine4.vr.im * pwLine4.Y.re)), pwLine4.Z.re * (pwLine4.ir.im - (pwLine4.vr.re * pwLine4.Y.im + pwLine4.vr.im * pwLine4.Y.re)) + pwLine4.Z.im * ((pwLine4.ir.re + pwLine4.vr.im * pwLine4.Y.im) - pwLine4.vr.re * pwLine4.Y.re)) ($RES_SIM_169) (114) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine4.vs.re - pwLine4.vr.re, pwLine4.vs.im - pwLine4.vr.im) = Complex.'constructor'.fromReal(pwLine4.Z.re * ((pwLine4.is.re + pwLine4.vs.im * pwLine4.Y.im) - pwLine4.vs.re * pwLine4.Y.re) - pwLine4.Z.im * (pwLine4.is.im - (pwLine4.vs.re * pwLine4.Y.im + pwLine4.vs.im * pwLine4.Y.re)), pwLine4.Z.re * (pwLine4.is.im - (pwLine4.vs.re * pwLine4.Y.im + pwLine4.vs.im * pwLine4.Y.re)) + pwLine4.Z.im * ((pwLine4.is.re + pwLine4.vs.im * pwLine4.Y.im) - pwLine4.vs.re * pwLine4.Y.re)) ($RES_SIM_170) (114) [----] end if; (115) [SCAL] (1) gENROE.I = sqrt(gENROE.p.ii ^ 2.0 + gENROE.p.ir ^ 2.0) ($RES_$AUX_329) (116) [SCAL] (1) gENROE.anglei = atan2(gENROE.p.ii, gENROE.p.ir) ($RES_$AUX_328) (117) [SCAL] (1) eSAC1A.rotatingExciterWithDemagnetization.se1.VE_OUT = OpenIPSL.NonElectrical.Functions.SE(eSAC1A.rectifierCommutationVoltageDrop.V_EX, eSAC1A.rotatingExciterWithDemagnetization.se1.SE1, eSAC1A.rotatingExciterWithDemagnetization.se1.SE2, eSAC1A.rotatingExciterWithDemagnetization.se1.E1, eSAC1A.rotatingExciterWithDemagnetization.se1.E2) ($RES_$AUX_327) (118) [SCAL] (1) pwLine4.ir.im = pwLine4.n.ii ($RES_BND_300) (119) [SCAL] (1) pwLine4.ir.re = pwLine4.n.ir ($RES_BND_301) (120) [SCAL] (1) pwLine1.vs.im = pwLine.n.vi ($RES_BND_306) (121) [SCAL] (1) pwLine1.vs.re = pwLine.n.vr ($RES_BND_307) (122) [SCAL] (1) pwLine1.is.im = pwLine1.p.ii ($RES_BND_308) (123) [SCAL] (1) pwLine1.is.re = pwLine1.p.ir ($RES_BND_309) (124) [ARRY] (1) eSAC1A.imLeadLag.TF.x = eSAC1A.imLeadLag.TF.x_scaled / eSAC1A.imLeadLag.TF.a_end ($RES_SIM_51) (125) [SCAL] (1) eSAC1A.imLeadLag.TF.y = (eSAC1A.imLeadLag.TF.bb[2:2] - eSAC1A.imLeadLag.TF.d * eSAC1A.imLeadLag.TF.a[2:2]) / (eSAC1A.imLeadLag.TF.a_end * eSAC1A.imLeadLag.TF.x_scaled) + eSAC1A.imLeadLag.TF.d * eSAC1A.add3_1.y ($RES_SIM_52) (126) [SCAL] (1) $DER.eSAC1A.imLeadLag.TF.x_scaled[1] = (eSAC1A.imLeadLag.TF.a_end * eSAC1A.add3_1.y - eSAC1A.imLeadLag.TF.a[2:2] * eSAC1A.imLeadLag.TF.x_scaled) / eSAC1A.imLeadLag.TF.a[1] ($RES_SIM_53) (127) [SCAL] (1) eSAC1A.limiter1.simplifiedExpr = min(eSAC1A.lV_GATE.u1, plusInf.k) ($RES_SIM_54) (128) [SCAL] (1) eSAC1A.lV_GATE.u1 = max(eSAC1A.simpleLagLim.y, minusInf.k) ($RES_SIM_55) (129) [SCAL] (1) eSAC1A.DiffV.y = eSAC1A.DiffV.k1 * eSAC1A.VoltageReference.k + eSAC1A.DiffV.k2 * eSAC1A.imSimpleLag.y ($RES_SIM_56) (130) [SCAL] (1) pwLine4.Q21 = -(pwLine4.ir.re * pwLine4.vr.im - pwLine4.ir.im * pwLine4.vr.re) * pwLine4.S_b ($RES_SIM_171) (131) [SCAL] (1) pwLine4.Q12 = (pwLine4.is.re * pwLine4.vs.im - pwLine4.is.im * pwLine4.vs.re) * pwLine4.S_b ($RES_SIM_172) (132) [SCAL] (1) pwLine4.P21 = -(pwLine4.ir.re * pwLine4.vr.re + pwLine4.ir.im * pwLine4.vr.im) * pwLine4.S_b ($RES_SIM_173) (133) [SCAL] (1) pwLine4.P12 = (pwLine4.is.re * pwLine4.vs.re + pwLine4.is.im * pwLine4.vs.im) * pwLine4.S_b ($RES_SIM_174) (134) [-IF-] (4)if $TEV_16 then (134) [----] [RECD] (2) pwLine3.ir = Complex(0.0, 0.0) ($RES_SIM_176) (134) [----] [RECD] (2) pwLine3.is = Complex(0.0, 0.0) ($RES_SIM_177) (134) [----] else (134) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine3.vr.re - pwLine3.vs.re, pwLine3.vr.im - pwLine3.vs.im) = Complex.'constructor'.fromReal(pwLine3.Z.re * ((pwLine3.ir.re + pwLine3.vr.im * pwLine3.Y.im) - pwLine3.vr.re * pwLine3.Y.re) - pwLine3.Z.im * (pwLine3.ir.im - (pwLine3.vr.re * pwLine3.Y.im + pwLine3.vr.im * pwLine3.Y.re)), pwLine3.Z.re * (pwLine3.ir.im - (pwLine3.vr.re * pwLine3.Y.im + pwLine3.vr.im * pwLine3.Y.re)) + pwLine3.Z.im * ((pwLine3.ir.re + pwLine3.vr.im * pwLine3.Y.im) - pwLine3.vr.re * pwLine3.Y.re)) ($RES_SIM_178) (134) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine3.vs.re - pwLine3.vr.re, pwLine3.vs.im - pwLine3.vr.im) = Complex.'constructor'.fromReal(pwLine3.Z.re * ((pwLine3.is.re + pwLine3.vs.im * pwLine3.Y.im) - pwLine3.vs.re * pwLine3.Y.re) - pwLine3.Z.im * (pwLine3.is.im - (pwLine3.vs.re * pwLine3.Y.im + pwLine3.vs.im * pwLine3.Y.re)), pwLine3.Z.re * (pwLine3.is.im - (pwLine3.vs.re * pwLine3.Y.im + pwLine3.vs.im * pwLine3.Y.re)) + pwLine3.Z.im * ((pwLine3.is.re + pwLine3.vs.im * pwLine3.Y.im) - pwLine3.vs.re * pwLine3.Y.re)) ($RES_SIM_179) (134) [----] end if; (135) [SCAL] (1) pwLine1.vr.im = pwLine1.n.vi ($RES_BND_310) (136) [SCAL] (1) pwLine1.vr.re = pwLine1.n.vr ($RES_BND_311) (137) [SCAL] (1) pwLine1.ir.im = pwLine1.n.ii ($RES_BND_312) (138) [SCAL] (1) pwLine1.ir.re = pwLine1.n.ir ($RES_BND_313) (139) [SCAL] (1) pwLine2.vs.im = pwLine1.n.vi ($RES_BND_314) (140) [SCAL] (1) pwLine2.vs.re = pwLine1.n.vr ($RES_BND_315) (141) [SCAL] (1) pwLine2.is.im = pwLine2.p.ii ($RES_BND_316) (142) [SCAL] (1) pwLine2.is.re = pwLine2.p.ir ($RES_BND_317) (143) [SCAL] (1) pwLine2.vr.im = gENCLS.p.vi ($RES_BND_318) (144) [SCAL] (1) pwLine2.vr.re = gENCLS.p.vr ($RES_BND_319) (145) [SCAL] (1) $DER.gENROE.delta = gENROE.w_b * gENROE.w ($RES_SIM_61) (146) [SCAL] (1) $DER.gENROE.w = (0.5 * ((gENROE.pm0 - gENROE.D * gENROE.w) / (1.0 + gENROE.w) - gENROE.Te)) / gENROE.H ($RES_SIM_62) (147) [SCAL] (1) pwLine2.Q21 = -(pwLine2.ir.re * pwLine2.vr.im - pwLine2.ir.im * pwLine2.vr.re) * pwLine2.S_b ($RES_SIM_102) (148) [SCAL] (1) pwLine2.Q12 = (pwLine2.is.re * pwLine2.vs.im - pwLine2.is.im * pwLine2.vs.re) * pwLine2.S_b ($RES_SIM_103) (149) [SCAL] (1) pwLine2.P21 = -(pwLine2.ir.re * pwLine2.vr.re + pwLine2.ir.im * pwLine2.vr.im) * pwLine2.S_b ($RES_SIM_104) (150) [SCAL] (1) pwLine2.P12 = (pwLine2.is.re * pwLine2.vs.re + pwLine2.is.im * pwLine2.vs.im) * pwLine2.S_b ($RES_SIM_105) (151) [-IF-] (4)if $TEV_5 then (151) [----] [RECD] (2) pwLine1.ir = Complex(0.0, 0.0) ($RES_SIM_107) (151) [----] [RECD] (2) pwLine1.is = Complex(0.0, 0.0) ($RES_SIM_108) (151) [----] else (151) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine1.vr.re - pwLine1.vs.re, pwLine1.vr.im - pwLine1.vs.im) = Complex.'constructor'.fromReal(pwLine1.Z.re * ((pwLine1.ir.re + pwLine1.vr.im * pwLine1.Y.im) - pwLine1.vr.re * pwLine1.Y.re) - pwLine1.Z.im * (pwLine1.ir.im - (pwLine1.vr.re * pwLine1.Y.im + pwLine1.vr.im * pwLine1.Y.re)), pwLine1.Z.re * (pwLine1.ir.im - (pwLine1.vr.re * pwLine1.Y.im + pwLine1.vr.im * pwLine1.Y.re)) + pwLine1.Z.im * ((pwLine1.ir.re + pwLine1.vr.im * pwLine1.Y.im) - pwLine1.vr.re * pwLine1.Y.re)) ($RES_SIM_109) (151) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine1.vs.re - pwLine1.vr.re, pwLine1.vs.im - pwLine1.vr.im) = Complex.'constructor'.fromReal(pwLine1.Z.re * ((pwLine1.is.re + pwLine1.vs.im * pwLine1.Y.im) - pwLine1.vs.re * pwLine1.Y.re) - pwLine1.Z.im * (pwLine1.is.im - (pwLine1.vs.re * pwLine1.Y.im + pwLine1.vs.im * pwLine1.Y.re)), pwLine1.Z.re * (pwLine1.is.im - (pwLine1.vs.re * pwLine1.Y.im + pwLine1.vs.im * pwLine1.Y.re)) + pwLine1.Z.im * ((pwLine1.is.re + pwLine1.vs.im * pwLine1.Y.im) - pwLine1.vs.re * pwLine1.Y.re)) ($RES_SIM_110) (151) [----] end if; (152) [SCAL] (1) -gENROE.Q = gENROE.p.vi * gENROE.p.ir - gENROE.p.vr * gENROE.p.ii ($RES_SIM_67) (153) [SCAL] (1) pwLine3.Q21 = -(pwLine3.ir.re * pwLine3.vr.im - pwLine3.ir.im * pwLine3.vr.re) * pwLine3.S_b ($RES_SIM_180) (154) [SCAL] (1) -gENROE.P = gENROE.p.vr * gENROE.p.ir + gENROE.p.vi * gENROE.p.ii ($RES_SIM_68) (155) [SCAL] (1) pwLine3.Q12 = (pwLine3.is.re * pwLine3.vs.im - pwLine3.is.im * pwLine3.vs.re) * pwLine3.S_b ($RES_SIM_181) (156) [ARRY] (2) {{gENROE.p.vr}, {gENROE.p.vi}} = {{$FUN_18, $FUN_19}, {-$FUN_19, $FUN_18}} * {{gENROE.ud}, {gENROE.uq}} ($RES_SIM_69) (157) [SCAL] (1) pwLine3.P21 = -(pwLine3.ir.re * pwLine3.vr.re + pwLine3.ir.im * pwLine3.vr.im) * pwLine3.S_b ($RES_SIM_182) (158) [SCAL] (1) pwLine3.P12 = (pwLine3.is.re * pwLine3.vs.re + pwLine3.is.im * pwLine3.vs.im) * pwLine3.S_b ($RES_SIM_183) (159) [-IF-] (4)if $TEV_19 then (159) [----] [RECD] (2) pwLine.ir = Complex(0.0, 0.0) ($RES_SIM_185) (159) [----] [RECD] (2) pwLine.is = Complex(0.0, 0.0) ($RES_SIM_186) (159) [----] else (159) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine.vr.re - pwLine.vs.re, pwLine.vr.im - pwLine.vs.im) = Complex.'constructor'.fromReal(pwLine.Z.re * ((pwLine.ir.re + pwLine.vr.im * pwLine.Y.im) - pwLine.vr.re * pwLine.Y.re) - pwLine.Z.im * (pwLine.ir.im - (pwLine.vr.re * pwLine.Y.im + pwLine.vr.im * pwLine.Y.re)), pwLine.Z.re * (pwLine.ir.im - (pwLine.vr.re * pwLine.Y.im + pwLine.vr.im * pwLine.Y.re)) + pwLine.Z.im * ((pwLine.ir.re + pwLine.vr.im * pwLine.Y.im) - pwLine.vr.re * pwLine.Y.re)) ($RES_SIM_187) (159) [----] [RECD] (2) Complex.'constructor'.fromReal(pwLine.vs.re - pwLine.vr.re, pwLine.vs.im - pwLine.vr.im) = Complex.'constructor'.fromReal(pwLine.Z.re * ((pwLine.is.re + pwLine.vs.im * pwLine.Y.im) - pwLine.vs.re * pwLine.Y.re) - pwLine.Z.im * (pwLine.is.im - (pwLine.vs.re * pwLine.Y.im + pwLine.vs.im * pwLine.Y.re)), pwLine.Z.re * (pwLine.is.im - (pwLine.vs.re * pwLine.Y.im + pwLine.vs.im * pwLine.Y.re)) + pwLine.Z.im * ((pwLine.is.re + pwLine.vs.im * pwLine.Y.im) - pwLine.vs.re * pwLine.Y.re)) ($RES_SIM_188) (159) [----] end if; (160) [SCAL] (1) pwLine.Q21 = -(pwLine.ir.re * pwLine.vr.im - pwLine.ir.im * pwLine.vr.re) * pwLine.S_b ($RES_SIM_189) (161) [SCAL] (1) pwLine2.ir.im = pwLine2.n.ii ($RES_BND_320) (162) [SCAL] (1) pwLine2.ir.re = pwLine2.n.ir ($RES_BND_321) (163) [ARRY] (2) {{gENROE.p.ir}, {gENROE.p.ii}} = -gENROE.CoB * {{$FUN_18, $FUN_19}, {-$FUN_19, $FUN_18}} * {{gENROE.id}, {gENROE.iq}} ($RES_SIM_70) (164) [SCAL] (1) gENROE.PELEC = gENROE.P / gENROE.CoB ($RES_SIM_71) (165) [SCAL] (1) pwLine1.Q21 = -(pwLine1.ir.re * pwLine1.vr.im - pwLine1.ir.im * pwLine1.vr.re) * pwLine1.S_b ($RES_SIM_111) (166) [SCAL] (1) pwLine1.Q12 = (pwLine1.is.re * pwLine1.vs.im - pwLine1.is.im * pwLine1.vs.re) * pwLine1.S_b ($RES_SIM_112) (167) [SCAL] (1) pwLine1.P21 = -(pwLine1.ir.re * pwLine1.vr.re + pwLine1.ir.im * pwLine1.vr.im) * pwLine1.S_b ($RES_SIM_113) (168) [SCAL] (1) pwLine1.P12 = (pwLine1.is.re * pwLine1.vs.re + pwLine1.is.im * pwLine1.vs.im) * pwLine1.S_b ($RES_SIM_114) (169) [SCAL] (1) gENROE.uq = gENROE.PSId - gENROE.R_a * gENROE.iq ($RES_SIM_75) (170) [SCAL] (1) gENROE.ud = -(gENROE.PSIq + gENROE.R_a * gENROE.id) ($RES_SIM_76) (171) [SCAL] (1) gENROE.XaqIlq = (((gENROE.Xq - gENROE.Xl) * gENROE.PSIppq * (gENROE.S10 * gENROE.PSIpp ^ (log(gENROE.S12 / gENROE.S10) / 0.1823215567939546))) / (gENROE.Xd - gENROE.Xl) + gENROE.Epd + gENROE.K1q * ((gENROE.Epd + (gENROE.Xpq - gENROE.Xl) * gENROE.iq) - gENROE.PSIkq)) - gENROE.iq * (gENROE.Xq - gENROE.Xpq) ($RES_SIM_77) (172) [SCAL] (1) pwLine.Q12 = (pwLine.is.re * pwLine.vs.im - pwLine.is.im * pwLine.vs.re) * pwLine.S_b ($RES_SIM_190) (173) [SCAL] (1) gENROE.ISORCE = gENROE.id * (gENROE.Xd - gENROE.Xpd) + gENROE.Epq + gENROE.K1d * (gENROE.Epq - ((gENROE.Xpd - gENROE.Xl) * gENROE.id + gENROE.PSIkd)) + (gENROE.S10 * gENROE.PSIpp ^ (log(gENROE.S12 / gENROE.S10) / 0.1823215567939546)) * gENROE.PSIppd ($RES_SIM_78) (174) [SCAL] (1) pwLine.P21 = -(pwLine.ir.re * pwLine.vr.re + pwLine.ir.im * pwLine.vr.im) * pwLine.S_b ($RES_SIM_191) (175) [SCAL] (1) pwLine.P12 = (pwLine.is.re * pwLine.vs.re + pwLine.is.im * pwLine.vs.im) * pwLine.S_b ($RES_SIM_192) (176) [SCAL] (1) gENROE.p.ii + pwLine.p.ii = 0.0 ($RES_SIM_193) (177) [SCAL] (1) gENROE.p.ir + pwLine.p.ir = 0.0 ($RES_SIM_194) (178) [SCAL] (1) pwLine2.p.ii + pwLine1.n.ii = 0.0 ($RES_SIM_195) (179) [SCAL] (1) pwLine2.p.ir + pwLine1.n.ir = 0.0 ($RES_SIM_196) (180) [SCAL] (1) pwLine4.p.ii + pwFault.p.ii + pwLine3.n.ii = 0.0 ($RES_SIM_197) (181) [SCAL] (1) pwLine4.p.ir + pwFault.p.ir + pwLine3.n.ir = 0.0 ($RES_SIM_198) (182) [SCAL] (1) gENCLS.p.ii + pwLine2.n.ii + pwLine4.n.ii = 0.0 ($RES_SIM_199) (183) [SCAL] (1) $TEV_0 = time >= pwLine2.t1 ($RES_EVT_363) (184) [SCAL] (1) $TEV_1 = time < pwLine2.t2 ($RES_EVT_364) (185) [SCAL] (1) $TEV_2 = $TEV_0 and $TEV_1 ($RES_EVT_365) (186) [SCAL] (1) $TEV_3 = time >= pwLine1.t1 ($RES_EVT_366) (187) [SCAL] (1) $TEV_4 = time < pwLine1.t2 ($RES_EVT_367) (188) [SCAL] (1) $TEV_5 = $TEV_3 and $TEV_4 ($RES_EVT_368) (189) [SCAL] (1) $TEV_6 = time < pwFault.t1 ($RES_EVT_369) (190) [SCAL] (1) gENCLS.p.ir + pwLine2.n.ir + pwLine4.n.ir = 0.0 ($RES_SIM_200) (191) [SCAL] (1) pwLine3.p.ii + constantLoad.p.ii + pwLine1.p.ii + pwLine.n.ii = 0.0 ($RES_SIM_201) (192) [SCAL] (1) pwLine3.p.ir + constantLoad.p.ir + pwLine1.p.ir + pwLine.n.ir = 0.0 ($RES_SIM_202)