Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries/ --ompython_omhome=/usr Modelica_3.2.3_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RL.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RL,tolerance=1e-06,outputFormat="mat",numberOfIntervals=1000,variableFilter="time|inductor.i|meanCurrent.x|meanVoltage.x|rootMeanSquareVoltage.mean.x|meanCurrent.y|meanVoltage.y|pulse2m.twomPulse.timerNegative.1..entryTime|pulse2m.twomPulse.timerNegative.2..entryTime|pulse2m.twomPulse.timerNegative.3..entryTime|pulse2m.twomPulse.timerPositive.1..entryTime|pulse2m.twomPulse.timerPositive.2..entryTime|pulse2m.twomPulse.timerPositive.3..entryTime|rectifier.thyristor_n.idealThyristor.1..off|rectifier.thyristor_n.idealThyristor.2..off|rectifier.thyristor_n.idealThyristor.3..off|rectifier.thyristor_p.idealThyristor.1..off|rectifier.thyristor_p.idealThyristor.2..off|rectifier.thyristor_p.idealThyristor.3..off|rootMeanSquareVoltage.mean.y",fileNamePrefix="Modelica_3.2.3_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RL") translateModel(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RL,tolerance=1e-06,outputFormat="mat",numberOfIntervals=1000,variableFilter="time|inductor.i|meanCurrent.x|meanVoltage.x|rootMeanSquareVoltage.mean.x|meanCurrent.y|meanVoltage.y|pulse2m.twomPulse.timerNegative.1..entryTime|pulse2m.twomPulse.timerNegative.2..entryTime|pulse2m.twomPulse.timerNegative.3..entryTime|pulse2m.twomPulse.timerPositive.1..entryTime|pulse2m.twomPulse.timerPositive.2..entryTime|pulse2m.twomPulse.timerPositive.3..entryTime|rectifier.thyristor_n.idealThyristor.1..off|rectifier.thyristor_n.idealThyristor.2..off|rectifier.thyristor_n.idealThyristor.3..off|rectifier.thyristor_p.idealThyristor.1..off|rectifier.thyristor_p.idealThyristor.2..off|rectifier.thyristor_p.idealThyristor.3..off|rootMeanSquareVoltage.mean.y",fileNamePrefix="Modelica_3.2.3_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RL") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001262/0.001262, allocations: 106.3 kB / 18.36 MB, free: 4.625 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001139/0.001139, allocations: 195.5 kB / 19.31 MB, free: 3.691 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.267/1.267, allocations: 205.1 MB / 225.2 MB, free: 12.26 MB / 190.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.81e-05/2.812e-05, allocations: 2.281 kB / 282.1 MB, free: 2.5 MB / 222.1 MB Notification: Performance of NFInst.instantiate(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RL): time 0.007534/0.00758, allocations: 5.85 MB / 287.9 MB, free: 12.61 MB / 238.1 MB Notification: Performance of NFInst.instExpressions: time 0.003365/0.01096, allocations: 1.816 MB / 289.7 MB, free: 10.79 MB / 238.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0004127/0.01139, allocations: 31.81 kB / 289.8 MB, free: 10.75 MB / 238.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0005263/0.01192, allocations: 253.9 kB / 290 MB, free: 10.5 MB / 238.1 MB Notification: Performance of NFTyping.typeBindings: time 0.001029/0.01297, allocations: 429.5 kB / 290.4 MB, free: 10.08 MB / 238.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.0006303/0.01362, allocations: 358.5 kB / 290.8 MB, free: 9.734 MB / 238.1 MB Notification: Performance of NFFlatten.flatten: time 0.002218/0.01584, allocations: 2.429 MB / 293.2 MB, free: 7.301 MB / 238.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.001064/0.01692, allocations: 0.9321 MB / 294.2 MB, free: 6.344 MB / 238.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.0008438/0.01777, allocations: 0.779 MB / 294.9 MB, free: 5.562 MB / 238.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0007982/0.01858, allocations: 0.802 MB / 295.7 MB, free: 4.758 MB / 238.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0001662/0.01876, allocations: 144 kB / 295.9 MB, free: 4.617 MB / 238.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.0002163/0.01898, allocations: 144 kB / 296 MB, free: 4.477 MB / 238.1 MB Notification: Performance of combineBinaries: time 0.001489/0.02048, allocations: 1.977 MB / 298 MB, free: 2.48 MB / 238.1 MB Notification: Performance of replaceArrayConstructors: time 0.0009382/0.02142, allocations: 1.289 MB / 299.3 MB, free: 1.176 MB / 238.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0002322/0.02166, allocations: 187.4 kB / 299.5 MB, free: 0.9922 MB / 238.1 MB Notification: Performance of FrontEnd: time 0.000157/0.02183, allocations: 51.75 kB / 299.5 MB, free: 0.9414 MB / 238.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 441 (219) * Number of variables: 441 (190) Notification: Performance of Bindings: time 0.005962/0.02779, allocations: 6.361 MB / 305.9 MB, free: 10.4 MB / 254.1 MB Notification: Performance of FunctionAlias: time 0.0004128/0.02822, allocations: 359.2 kB / 306.2 MB, free: 10.05 MB / 254.1 MB Notification: Performance of Early Inline: time 0.002993/0.03122, allocations: 3.073 MB / 309.3 MB, free: 6.934 MB / 254.1 MB Notification: Performance of simplify1: time 0.0001607/0.03139, allocations: 163.7 kB / 309.5 MB, free: 6.773 MB / 254.1 MB Notification: Performance of Alias: time 0.003438/0.03483, allocations: 3.178 MB / 312.6 MB, free: 3.363 MB / 254.1 MB Notification: Performance of simplify2: time 0.000114/0.03496, allocations: 115.8 kB / 312.7 MB, free: 3.25 MB / 254.1 MB Notification: Performance of Events: time 0.0007548/0.03573, allocations: 0.6928 MB / 313.4 MB, free: 2.559 MB / 254.1 MB Notification: Performance of Detect States: time 0.001031/0.03677, allocations: 1.032 MB / 314.5 MB, free: 1.504 MB / 254.1 MB Notification: Performance of Partitioning: time 0.001531/0.03831, allocations: 1.383 MB / 315.9 MB, free: 28 kB / 254.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency pulse2m.twomPulse.gain.y could not be devided by the body size 3 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (3) pulse2m.twomPulse.replicator.y = {pulse2m.twomPulse.gain.y for $i1 in 1:3} ($RES_SIM_48) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (171/450) **************************** (1) [DISC] (3) Boolean[3] $SEV_6[$i1] (2) [ALGB] (1) Real rootMeanSquareVoltage.product.y (3) [ALGB] (3) flow Real[3] rectifier.thyristor_n.idealThyristor.p.i (4) [ALGB] (3) Real[3] rectifier.ac_p.pin.v (5) [ALGB] (2) Real[2] rootMeanSquareVoltage.product.u (6) [DISC] (3) final Boolean[3] rectifier.thyristor_p.idealThyristor.off (fixed = {true for $i1 in 1:3}, start = {rectifier.offStart_p[$idealThyristor1] for $idealThyristor1 in 1:3}) (7) [ALGB] (1) Real resistor.v (8) [DISC] (3) Boolean[3] $SEV_1[$i1] (9) [DISC] (1) Boolean $TEV_9 (10) [ALGB] (1) Real resistor.LossPower (11) [DISC] (1) Boolean $TEV_8 (12) [ALGB] (3) Real[3] rectifier.thyristor_n.idealThyristor.p.v (13) [DISC] (1) Boolean $TEV_1 (14) [ALGB] (3) flow Real[3] rectifier.ac_p.pin.i (15) [DISC] (1) Boolean $TEV_0 (16) [ALGB] (3) flow Real[3] rectifier.thyristor_p.idealThyristor.p.i (17) [ALGB] (3) flow Real[3] pulse2m.delta.plug_p.pin.i (18) [ALGB] (3) flow Real[3] sineVoltage_p.plug_n.pin.i (19) [ALGB] (1) Real pulse2m.twomPulse.limiter.y (20) [ALGB] (3) flow Real[3] sineVoltage_n.plug_n.pin.i (21) [ALGB] (1) Real rectifier.vDC = rectifier.vDC (22) [ALGB] (3) Real[3] pulse2m.twomPulse.replicator.y (23) [ALGB] (1) Real rectifier.powerTotalAC = sum(rectifier.powerAC) (24) [ALGB] (3) Real[3] pulse2m.twomPulse.positiveThreshold.u (25) [ALGB] (3) Real[3] rectifier.thyristor_p.idealThyristor.p.v (26) [ALGB] (3) Real[3] pulse2m.delta.plug_p.pin.v (27) [DISS] (3) protected discrete Real[3] pulse2m.twomPulse.timerNegative.entryTime (28) [DISC] (3) Boolean[3] pulse2m.twomPulse.positiveThreshold.y (29) [ALGB] (3) Real[3] sineVoltage_p.plug_n.pin.v (30) [ALGB] (3) Real[3] sineVoltage_n.plug_n.pin.v (31) [ALGB] (3) flow Real[3] pulse2m.voltageSensor.potentialSensor.p.i (32) [DISC] (3) Boolean[3] $SEV_14[$i1] (33) [ALGB] (3) Real[3] rectifier.thyristor_n.v (34) [ALGB] (3) Real[3] pulse2m.twomPulse.negativeThreshold.u (35) [DISC] (3) Boolean[3] rectifier.enableLogic.booleanReplicator.y (36) [ALGB] (3) flow Real[3] pulse2m.ac.pin.i (37) [DISC] (3) Boolean[3] pulse2m.twomPulse.negativeThreshold.y (38) [ALGB] (1) Real rectifier.iDC = rectifier.iDC (39) [ALGB] (3) flow Real[3] sineVoltage_p.sineVoltage.n.i (40) [ALGB] (3) Real[3] pulse2m.twomPulse.greaterPositive.u1 (41) [ALGB] (3) Real[3] pulse2m.twomPulse.greaterPositive.u2 (42) [DISC] (3) Boolean[3] $SEV_5[$i1] (43) [DISC] (3) Boolean[3] pulse2m.twomPulse.negativeEqual.y (44) [ALGB] (3) Real[3] pulse2m.voltageSensor.potentialSensor.p.v (45) [ALGB] (3) Real[3] rectifier.thyristor_n.i (46) [DISC] (3) Boolean[3] rectifier.enableLogic.internalEnable (47) [ALGB] (3) Real[3] pulse2m.ac.pin.v (48) [ALGB] (3) Real[3] rectifier.thyristor_p.plug_p.pin.v (49) [ALGB] (3) Real[3] rectifier.thyristor_n.plug_p.pin.v (50) [ALGB] (3) Real[3] pulse2m.twomPulse.v (51) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.n.v (52) [DISC] (3) Boolean[3] pulse2m.twomPulse.greaterPositive.y (53) [ALGB] (3) flow Real[3] rectifier.star_p.plug_p.pin.i (54) [ALGB] (3) flow Real[3] rectifier.star_n.plug_p.pin.i (55) [DER-] (1) Real $DER.meanVoltage.x (56) [ALGB] (1) flow Real rectifier.star_p.pin_n.i (57) [ALGB] (1) Real rectifier.LossPower (58) [ALGB] (1) Real resistor.n.v (59) [ALGB] (3) flow Real[3] rectifier.thyristor_p.plug_p.pin.i (60) [ALGB] (3) flow Real[3] rectifier.thyristor_n.plug_p.pin.i (61) [DISC] (3) Boolean[3] rectifier.andCondition_n.y (62) [ALGB] (3) Real[3] sineVoltage_n.i (63) [DISC] (3) Boolean[3] rectifier.andCondition_n.u2 (64) [DISC] (3) Boolean[3] rectifier.andCondition_n.u1 (65) [ALGB] (3) Real[3] rectifier.star_n.plug_p.pin.v (66) [ALGB] (3) Real[3] rectifier.star_p.plug_p.pin.v (67) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.p.v (68) [ALGB] (3) Real[3] $FUN_9 (69) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.signalSource.y (70) [ALGB] (1) Real $FUN_6 (71) [ALGB] (1) Real $FUN_5 (72) [DISC] (3) Boolean[3] pulse2m.twomPulse.fire_p (73) [ALGB] (3) final Real[3] rectifier.thyristor_n.idealThyristor.LossPower (74) [ALGB] (1) flow Real ground.p.i (75) [DISC] (3) Boolean[3] pulse2m.twomPulse.fire_n (76) [ALGB] (3) Real[3] $FUN_2 (77) [ALGB] (3) Real[3] sineVoltage_n.v (78) [DISC] (3) Boolean[3] rectifier.thyristor_n.idealThyristor.fire (79) [DER-] (1) Real $DER.meanCurrent.x (80) [DISC] (3) Boolean[3] rectifier.thyristor_n.fire (81) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.i (82) [ALGB] (3) flow Real[3] sineVoltage_n.sineVoltage.p.i (83) [DISC] (3) Boolean[3] $SEV_13[$i1] (84) [ALGB] (3) final Real[3] rectifier.thyristor_n.idealThyristor.i (85) [DISC] (3) Boolean[3] $SEV_9[$i1] (86) [DISC] (3) Boolean[3] pulse2m.twomPulse.timerPositive.u (87) [ALGB] (3) Real[3] pulse2m.twomPulse.timerPositive.y (88) [DISC] (3) Boolean[3] rectifier.fire_n (89) [ALGB] (3) Real[3] rectifier.ac_n.pin.v (90) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.v (91) [ALGB] (3) protected final Real[3] rectifier.thyristor_n.idealThyristor.s (start = {0.0 for $i1 in 1:3}) (92) [DISC] (3) Boolean[3] rectifier.fire_p (93) [ALGB] (3) final Real[3] rectifier.thyristor_n.idealThyristor.v (94) [ALGB] (3) Real[3] rectifier.powerAC = rectifier.vAC * rectifier.iAC (95) [ALGB] (3) flow Real[3] rectifier.ac_n.pin.i (96) [ALGB] (3) flow Real[3] sineVoltage_n.plug_p.pin.i (97) [ALGB] (3) flow Real[3] sineVoltage_p.plug_p.pin.i (98) [ALGB] (3) Real[3] rectifier.vAC = rectifier.ac_p.pin[:].v - rectifier.ac_n.pin[:].v (99) [ALGB] (1) Real meanVoltage.u (100) [ALGB] (3) Real[3] sineVoltage_p.plug_p.pin.v (101) [ALGB] (3) flow Real[3] rectifier.thyristor_n.idealThyristor.n.i (102) [ALGB] (3) Real[3] pulse2m.gain.y (103) [ALGB] (1) flow Real rectifier.star_n.pin_n.i (104) [ALGB] (3) Real[3] sineVoltage_n.plug_p.pin.v (105) [DISC] (3) Boolean[3] $SEV_17[$i1] (106) [DISC] (1) Boolean $SEV_3 (107) [DISC] (1) Boolean $SEV_2 (108) [ALGB] (3) Real[3] pulse2m.gain.u (109) [DISC] (3) Boolean[3] $SEV_12[$i1] (110) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.v (111) [ALGB] (3) Real[3] rectifier.iAC = rectifier.ac_p.pin[:].i (112) [ALGB] (3) Real[3] rectifier.thyristor_n.idealThyristor.n.v (113) [ALGB] (3) Real[3] pulse2m.voltageSensor.phi (114) [DISC] (3) Boolean[3] $SEV_8[$i1] (115) [ALGB] (1) Real inductor.v (116) [DISC] (3) Boolean[3] rectifier.thyristor_n.off = rectifier.thyristor_n.idealThyristor.off (117) [ALGB] (3) flow Real[3] rectifier.thyristor_p.idealThyristor.n.i (118) [ALGB] (3) Real[3] pulse2m.voltageSensor.potentialSensor.phi (119) [ALGB] (1) flow Real star.pin_n.i (120) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.i (121) [ALGB] (3) Real[3] rectifier.thyristor_p.plug_n.pin.v (122) [ALGB] (3) Real[3] rectifier.thyristor_n.plug_n.pin.v (123) [DISC] (3) Boolean[3] rectifier.andCondition_p.u2 (124) [DISC] (3) Boolean[3] rectifier.thyristor_p.off = rectifier.thyristor_p.idealThyristor.off (125) [DISC] (3) Boolean[3] rectifier.andCondition_p.u1 (126) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.signalSource.y (127) [ALGB] (1) Real resistor.R_actual (128) [ALGB] (3) Real[3] rectifier.thyristor_p.idealThyristor.n.v (129) [ALGB] (3) flow Real[3] sineVoltage_p.sineVoltage.p.i (130) [DER-] (1) Real $DER.rootMeanSquareVoltage.mean.x (131) [DISC] (3) Boolean[3] rectifier.thyristor_p.idealThyristor.fire (132) [ALGB] (3) flow Real[3] rectifier.thyristor_p.plug_n.pin.i (133) [ALGB] (3) flow Real[3] rectifier.thyristor_n.plug_n.pin.i (134) [ALGB] (3) Real[3] rectifier.thyristor_p.v (135) [ALGB] (3) flow Real[3] pulse2m.delta.plug_n.pin.i (136) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.p.v (137) [DISS] (3) protected discrete Real[3] pulse2m.twomPulse.timerPositive.entryTime (138) [ALGB] (3) Real[3] rectifier.thyristor_p.i (139) [DISC] (3) Boolean[3] $SEV_16[$i1] (140) [ALGB] (3) Real[3] pulse2m.delta.plug_n.pin.v (141) [ALGB] (3) Real[3] pulse2m.twomPulse.realPassThrough.y (142) [DISC] (3) Boolean[3] rectifier.thyristor_p.fire (143) [ALGB] (3) Real[3] pulse2m.twomPulse.realPassThrough.u (144) [ALGB] (3) Real[3] sineVoltage_p.i (145) [DISC] (3) Boolean[3] $SEV_11[$i1] (146) [ALGB] (3) final Real[3] rectifier.thyristor_p.idealThyristor.LossPower (147) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.n.v (148) [DISC] (3) Boolean[3] $SEV_7[$i1] (149) [ALGB] (1) flow Real currentSensor.n.i (150) [DISC] (3) Boolean[3] rectifier.andCondition_p.y (151) [ALGB] (3) Real[3] sineVoltage_p.v (152) [ALGB] (3) Real[3] pulse2m.twomPulse.negativeEqual.u1 (153) [ALGB] (3) Real[3] pulse2m.twomPulse.negativeEqual.u2 (154) [ALGB] (3) flow Real[3] sineVoltage_n.sineVoltage.n.i (155) [DISC] (3) Boolean[3] pulse2m.twomPulse.timerNegative.u (156) [ALGB] (1) Real rectifier.powerDC = rectifier.vDC * rectifier.iDC (157) [ALGB] (3) Real[3] pulse2m.twomPulse.timerNegative.y (158) [ALGB] (3) Real[3] pulse2m.voltageSensor.plug_p.pin.v (159) [ALGB] (3) flow Real[3] star.plug_p.pin.i (160) [DISC] (3) Boolean[3] pulse2m.fire_p (161) [DISC] (3) Boolean[3] pulse2m.fire_n (162) [DER-] (1) Real $DER.inductor.i (163) [ALGB] (3) final Real[3] rectifier.thyristor_p.idealThyristor.i (164) [ALGB] (3) flow Real[3] pulse2m.voltageSensor.plug_p.pin.i (165) [ALGB] (3) Real[3] star.plug_p.pin.v (166) [ALGB] (3) protected final Real[3] rectifier.thyristor_p.idealThyristor.s (start = {0.0 for $i1 in 1:3}) (167) [DISC] (3) final Boolean[3] rectifier.thyristor_n.idealThyristor.off (fixed = {true for $i1 in 1:3}, start = {rectifier.offStart_n[$idealThyristor1] for $idealThyristor1 in 1:3}) (168) [DISC] (3) Boolean[3] $SEV_15[$i1] (169) [ALGB] (3) final Real[3] rectifier.thyristor_p.idealThyristor.v (170) [ALGB] (1) Real pulse2m.twomPulse.gain.y (171) [DISC] (3) Boolean[3] $SEV_10[$i1] System Equations (200/450) **************************** (1) [ARRY] (3) pulse2m.voltageSensor.potentialSensor.phi = pulse2m.voltageSensor.phi ($RES_SIM_204) (2) [FOR-] (3) ($RES_SIM_205) (2) [----] for $i1 in 1:3 loop (2) [----] [SCAL] (1) pulse2m.voltageSensor.potentialSensor[$i1].p.i - pulse2m.voltageSensor.plug_p.pin[$i1].i = 0.0 ($RES_SIM_206) (2) [----] end for; (3) [FOR-] (3) ($RES_SIM_120) (3) [----] for $i1 in 1:3 loop (3) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].LossPower = rectifier.thyristor_p.idealThyristor[$i1].v * rectifier.thyristor_p.idealThyristor[$i1].i ($RES_SIM_121) (3) [----] end for; (4) [SCAL] (1) $DER.meanVoltage.x = meanVoltage.u ($RES_SIM_80) (5) [SCAL] (1) meanVoltage.u = rectifier.vDC ($RES_SIM_81) (6) [ARRY] (3) rectifier.enableLogic.internalEnable = rectifier.enableLogic.booleanReplicator.y ($RES_SIM_280) (7) [ARRY] (3) pulse2m.voltageSensor.potentialSensor.p.v = pulse2m.voltageSensor.plug_p.pin.v ($RES_SIM_207) (8) [FOR-] (3) ($RES_SIM_122) (8) [----] for $i1 in 1:3 loop (8) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].i = rectifier.thyristor_p.idealThyristor[$i1].s * (if rectifier.thyristor_p.idealThyristor[$i1].off then rectifier.thyristor_p.idealThyristor[$i1].Goff else 1.0) + rectifier.thyristor_p.idealThyristor[$i1].Goff * rectifier.thyristor_p.idealThyristor[$i1].Vknee ($RES_SIM_123) (8) [----] end for; (9) [FOR-] (3) ($RES_SIM_281) (9) [----] for $i1 in 1:3 loop (9) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].n.i - sineVoltage_p.plug_n.pin[$i1].i = 0.0 ($RES_SIM_282) (9) [----] end for; (10) [SCAL] (1) -(pulse2m.delta.plug_n.pin[3].i + pulse2m.delta.plug_p.pin[1].i) = 0.0 ($RES_SIM_208) (11) [SCAL] (1) pulse2m.delta.plug_n.pin[3].v = pulse2m.delta.plug_p.pin[1].v ($RES_SIM_209) (12) [FOR-] (3) ($RES_SIM_124) (12) [----] for $i1 in 1:3 loop (12) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].v = rectifier.thyristor_p.idealThyristor[$i1].s * (if rectifier.thyristor_p.idealThyristor[$i1].off then 1.0 else rectifier.thyristor_p.idealThyristor[$i1].Ron) + rectifier.thyristor_p.idealThyristor[$i1].Vknee ($RES_SIM_125) (12) [----] end for; (13) [ARRY] (3) sineVoltage_p.sineVoltage.n.v = sineVoltage_p.plug_n.pin.v ($RES_SIM_283) (14) [SCAL] (1) rectifier.LossPower = $FUN_5 + $FUN_6 ($RES_SIM_85) (15) [FOR-] (3) ($RES_SIM_284) (15) [----] for $i1 in 1:3 loop (15) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].p.i - sineVoltage_p.plug_p.pin[$i1].i = 0.0 ($RES_SIM_285) (15) [----] end for; (16) [FOR-] (3) ($RES_SIM_126) (16) [----] for $i1 in 1:3 loop (16) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].off = $SEV_14[$i1] ($RES_SIM_127) (16) [----] end for; (17) [FOR-] (3) ($RES_SIM_87) (17) [----] for $i1 in 1:3 loop (17) [----] [SCAL] (1) rectifier.star_n.plug_p.pin[$i1].v = rectifier.vDC ($RES_SIM_88) (17) [----] end for; (18) [ARRY] (3) sineVoltage_p.sineVoltage.p.v = sineVoltage_p.plug_p.pin.v ($RES_SIM_286) (19) [FOR-] (3) ($RES_SIM_128) (19) [----] for $i1 in 1:3 loop (19) [----] [SCAL] (1) rectifier.andCondition_n[$i1].y = $SEV_15[$i1] ($RES_SIM_129) (19) [----] end for; (20) [SCAL] (1) -(pulse2m.delta.plug_n.pin[2].i + pulse2m.delta.plug_p.pin[3].i) = 0.0 ($RES_SIM_210) (21) [SCAL] (1) pulse2m.delta.plug_n.pin[2].v = pulse2m.delta.plug_p.pin[3].v ($RES_SIM_211) (22) [SCAL] (1) -(pulse2m.delta.plug_n.pin[1].i + pulse2m.delta.plug_p.pin[2].i) = 0.0 ($RES_SIM_212) (23) [SCAL] (1) pulse2m.delta.plug_n.pin[1].v = pulse2m.delta.plug_p.pin[2].v ($RES_SIM_213) (24) [SCAL] (1) inductor.v = resistor.n.v ($RES_SIM_15) (25) [SCAL] (1) pulse2m.twomPulse.realPassThrough[3].y = pulse2m.twomPulse.positiveThreshold[3].u ($RES_SIM_214) (26) [SCAL] (1) $DER.inductor.i = inductor.v ($RES_SIM_16) (27) [ARRY] (3) rectifier.enableLogic.booleanReplicator.y = {rectifier.enableLogic.enableConstantSource.k for $i1 in 1:3} ($RES_SIM_130) (28) [SCAL] (1) pulse2m.twomPulse.realPassThrough[3].y = pulse2m.twomPulse.negativeThreshold[3].u ($RES_SIM_215) (29) [FOR-] (3) ($RES_SIM_90) (29) [----] for $i1 in 1:3 loop (29) [----] [SCAL] (1) rectifier.star_p.plug_p.pin[$i1].v = rectifier.vDC ($RES_SIM_91) (29) [----] end for; (30) [SCAL] (1) pulse2m.twomPulse.realPassThrough[2].y = pulse2m.twomPulse.positiveThreshold[2].u ($RES_SIM_216) (31) [SCAL] (1) pulse2m.twomPulse.realPassThrough[2].y = pulse2m.twomPulse.negativeThreshold[2].u ($RES_SIM_217) (32) [FOR-] (3) ($RES_SIM_132) (32) [----] for $i1 in 1:3 loop (32) [----] [SCAL] (1) rectifier.andCondition_p[$i1].y = $SEV_16[$i1] ($RES_SIM_133) (32) [----] end for; (33) [ARRY] (3) rectifier.thyristor_n.i = rectifier.thyristor_n.plug_p.pin.i ($RES_SIM_92) (34) [SCAL] (1) resistor.v = rectifier.vDC - resistor.n.v ($RES_SIM_19) (35) [SCAL] (1) pulse2m.twomPulse.realPassThrough[1].y = pulse2m.twomPulse.positiveThreshold[1].u ($RES_SIM_218) (36) [ARRY] (3) rectifier.thyristor_n.v = rectifier.thyristor_n.plug_p.pin.v - rectifier.thyristor_n.plug_n.pin.v ($RES_SIM_93) (37) [SCAL] (1) pulse2m.twomPulse.realPassThrough[1].y = pulse2m.twomPulse.negativeThreshold[1].u ($RES_SIM_219) (38) [FOR-] (3) ($RES_SIM_94) (38) [----] for $i1 in 1:3 loop (38) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].i = rectifier.thyristor_n.idealThyristor[$i1].p.i ($RES_SIM_95) (38) [----] end for; (39) [ARRY] (3) sineVoltage_p.i = sineVoltage_p.plug_p.pin.i ($RES_SIM_134) (40) [ARRY] (3) sineVoltage_p.v = sineVoltage_p.plug_p.pin.v - sineVoltage_p.plug_n.pin.v ($RES_SIM_135) (41) [FOR-] (3) ($RES_SIM_96) (41) [----] for $i1 in 1:3 loop (41) [----] [SCAL] (1) 0.0 = rectifier.thyristor_n.idealThyristor[$i1].p.i + rectifier.thyristor_n.idealThyristor[$i1].n.i ($RES_SIM_97) (41) [----] end for; (42) [FOR-] (3) ($RES_SIM_136) (42) [----] for $i1 in 1:3 loop (42) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].i = sineVoltage_p.sineVoltage[$i1].p.i ($RES_SIM_137) (42) [----] end for; (43) [FOR-] (3) ($RES_SIM_98) (43) [----] for $i1 in 1:3 loop (43) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].v = rectifier.thyristor_n.idealThyristor[$i1].p.v - rectifier.thyristor_n.idealThyristor[$i1].n.v ($RES_SIM_99) (43) [----] end for; (44) [FOR-] (3) ($RES_SIM_138) (44) [----] for $i1 in 1:3 loop (44) [----] [SCAL] (1) 0.0 = sineVoltage_p.sineVoltage[$i1].p.i + sineVoltage_p.sineVoltage[$i1].n.i ($RES_SIM_139) (44) [----] end for; (45) [SCAL] (1) $TEV_0 = $PRE.pulse2m.twomPulse.timerNegative.entryTime ($RES_EVT_308) (46) [SCAL] (1) $TEV_1 = $PRE.pulse2m.twomPulse.timerPositive.entryTime ($RES_EVT_309) (47) [SCAL] (1) resistor.LossPower = resistor.v * inductor.i ($RES_SIM_21) (48) [ARRY] (3) pulse2m.twomPulse.realPassThrough.u = pulse2m.twomPulse.v ($RES_SIM_220) (49) [SCAL] (1) resistor.v = resistor.R_actual * inductor.i ($RES_SIM_22) (50) [SCAL] (1) resistor.R_actual = resistor.R * (1.0 + resistor.alpha * (resistor.T - resistor.T_ref)) ($RES_SIM_23) (51) [SCAL] (1) pulse2m.twomPulse.replicator.y[3] = pulse2m.twomPulse.greaterPositive[3].u2 ($RES_SIM_223) (52) [ARRY] (3) sineVoltage_n.i = sineVoltage_n.plug_p.pin.i ($RES_SIM_25) (53) [SCAL] (1) pulse2m.twomPulse.replicator.y[3] = pulse2m.twomPulse.negativeEqual[3].u2 ($RES_SIM_224) (54) [ARRY] (3) sineVoltage_n.v = sineVoltage_n.plug_p.pin.v - sineVoltage_n.plug_n.pin.v ($RES_SIM_26) (55) [SCAL] (1) pulse2m.twomPulse.replicator.y[2] = pulse2m.twomPulse.greaterPositive[2].u2 ($RES_SIM_225) (56) [FOR-] (3) ($RES_SIM_140) (56) [----] for $i1 in 1:3 loop (56) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].v = sineVoltage_p.sineVoltage[$i1].p.v - sineVoltage_p.sineVoltage[$i1].n.v ($RES_SIM_141) (56) [----] end for; (57) [FOR-] (3) ($RES_SIM_27) (57) [----] for $i1 in 1:3 loop (57) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].i = sineVoltage_n.sineVoltage[$i1].p.i ($RES_SIM_28) (57) [----] end for; (58) [SCAL] (1) pulse2m.twomPulse.replicator.y[2] = pulse2m.twomPulse.negativeEqual[2].u2 ($RES_SIM_226) (59) [SCAL] (1) pulse2m.twomPulse.replicator.y[1] = pulse2m.twomPulse.greaterPositive[1].u2 ($RES_SIM_227) (60) [FOR-] (3) ($RES_SIM_142) (60) [----] for $i1 in 1:3 loop (60) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].v = sineVoltage_p.sineVoltage[$i1].signalSource.y ($RES_SIM_143) (60) [----] end for; (61) [FOR-] (3) ($RES_SIM_29) (61) [----] for $i1 in 1:3 loop (61) [----] [SCAL] (1) 0.0 = sineVoltage_n.sineVoltage[$i1].p.i + sineVoltage_n.sineVoltage[$i1].n.i ($RES_SIM_30) (61) [----] end for; (62) [SCAL] (1) pulse2m.twomPulse.replicator.y[1] = pulse2m.twomPulse.negativeEqual[1].u2 ($RES_SIM_228) (63) [FOR-] (3) ($RES_SIM_144) (63) [----] for $i1 in 1:3 loop (63) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].signalSource.y = sineVoltage_p.sineVoltage[$i1].signalSource.offset + (if $SEV_17[$i1] then 0.0 else sineVoltage_p.sineVoltage[$i1].signalSource.amplitude * $FUN_2[$i1]) ($RES_SIM_145) (63) [----] end for; (64) [FOR-] (3) ($RES_SIM_147) (64) [----] for $i1 in 1:3 loop (64) [----] [SCAL] (1) star.plug_p.pin[$i1].v = 0.0 ($RES_SIM_148) (64) [----] end for; (65) [SCAL] (1) $TEV_8 = $PRE.rectifier.thyristor_n.idealThyristor[$i1].off ($RES_EVT_316) (66) [SCAL] (1) $TEV_9 = $PRE.rectifier.thyristor_p.idealThyristor[$i1].off ($RES_EVT_317) (67) [FOR-] (3) ($RES_EVT_319) (67) [----] for $i1 in 1:3 loop (67) [----] [SCAL] (1) $SEV_1[$i1] = time < sineVoltage_n.sineVoltage[$i1].signalSource.startTime ($RES_EVT_320) (67) [----] end for; (68) [FOR-] (3) ($RES_SIM_31) (68) [----] for $i1 in 1:3 loop (68) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].v = sineVoltage_n.sineVoltage[$i1].p.v - sineVoltage_n.sineVoltage[$i1].n.v ($RES_SIM_32) (68) [----] end for; (69) [ARRY] (3) pulse2m.twomPulse.negativeEqual.y = pulse2m.twomPulse.fire_n ($RES_SIM_230) (70) [ARRY] (3) pulse2m.twomPulse.greaterPositive.y = pulse2m.twomPulse.fire_p ($RES_SIM_231) (71) [FOR-] (3) ($RES_SIM_33) (71) [----] for $i1 in 1:3 loop (71) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].v = sineVoltage_n.sineVoltage[$i1].signalSource.y ($RES_SIM_34) (71) [----] end for; (72) [ARRY] (3) pulse2m.twomPulse.negativeEqual.u1 = pulse2m.twomPulse.timerNegative.y ($RES_SIM_232) (73) [ARRY] (3) pulse2m.twomPulse.timerPositive.y = pulse2m.twomPulse.greaterPositive.u1 ($RES_SIM_233) (74) [FOR-] (3) ($RES_SIM_35) (74) [----] for $i1 in 1:3 loop (74) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].signalSource.y = sineVoltage_n.sineVoltage[$i1].signalSource.offset + (if $SEV_1[$i1] then 0.0 else sineVoltage_n.sineVoltage[$i1].signalSource.amplitude * $FUN_9[$i1]) ($RES_SIM_36) (74) [----] end for; (75) [ARRY] (3) pulse2m.twomPulse.negativeThreshold.y = pulse2m.twomPulse.timerNegative.u ($RES_SIM_234) (76) [ARRY] (3) pulse2m.twomPulse.positiveThreshold.y = pulse2m.twomPulse.timerPositive.u ($RES_SIM_235) (77) [SCAL] (1) -(currentSensor.n.i + inductor.i) = 0.0 ($RES_SIM_150) (78) [FOR-] (3) ($RES_SIM_37) (78) [----] for $i1 in 1:3 loop (78) [----] [SCAL] (1) pulse2m.gain[$i1].y = pulse2m.gain[$i1].k * pulse2m.gain[$i1].u ($RES_SIM_38) (78) [----] end for; (79) [SCAL] (1) meanVoltage.u = rootMeanSquareVoltage.product.u[1] ($RES_SIM_236) (80) [ARRY] (3) rectifier.vAC = rectifier.ac_p.pin[:].v - rectifier.ac_n.pin[:].v ($RES_BND_287) (81) [SCAL] (1) meanVoltage.u = rootMeanSquareVoltage.product.u[2] ($RES_SIM_237) (82) [SCAL] (1) inductor.i + rectifier.iDC = 0.0 ($RES_SIM_152) (83) [FOR-] (3) ($RES_SIM_39) (83) [----] for $i1 in 1:3 loop (83) [----] [SCAL] (1) pulse2m.voltageSensor.potentialSensor[$i1].phi = pulse2m.voltageSensor.potentialSensor[$i1].p.v ($RES_SIM_40) (83) [----] end for; (84) [ARRY] (3) rectifier.iAC = rectifier.ac_p.pin[:].i ($RES_BND_288) (85) [SCAL] (1) (rectifier.star_p.pin_n.i + rectifier.star_n.pin_n.i) - rectifier.iDC = 0.0 ($RES_SIM_153) (86) [ARRY] (3) rectifier.powerAC = rectifier.vAC * rectifier.iAC ($RES_BND_289) (87) [SCAL] (1) star.pin_n.i + currentSensor.n.i + ground.p.i = 0.0 ($RES_SIM_154) (88) [ARRY] (3) pulse2m.fire_n = rectifier.fire_n ($RES_SIM_155) (89) [FOR-] (3) ($RES_SIM_156) (89) [----] for $i1 in 1:3 loop (89) [----] [SCAL] (1) sineVoltage_n.plug_n.pin[$i1].i + rectifier.ac_n.pin[$i1].i = 0.0 ($RES_SIM_157) (89) [----] end for; (90) [ARRY] (3) sineVoltage_n.plug_n.pin.v = rectifier.ac_n.pin.v ($RES_SIM_158) (91) [SCAL] (1) star.plug_p.pin[3].i + sineVoltage_p.plug_n.pin[3].i + sineVoltage_n.plug_p.pin[3].i = 0.0 ($RES_SIM_159) (92) [SCAL] (1) $SEV_2 = pulse2m.twomPulse.constantconstantFiringAngle.k > pulse2m.twomPulse.limiter.uMax ($RES_EVT_321) (93) [SCAL] (1) $SEV_3 = pulse2m.twomPulse.constantconstantFiringAngle.k < pulse2m.twomPulse.limiter.uMin ($RES_EVT_322) (94) [FOR-] (3) ($RES_EVT_324) (94) [----] for $i1 in 1:3 loop (94) [----] [SCAL] (1) $SEV_5[$i1] = pulse2m.twomPulse.negativeEqual[$i1].u1 > pulse2m.twomPulse.negativeEqual[$i1].u2 ($RES_EVT_325) (94) [----] end for; (95) [FOR-] (3) ($RES_EVT_326) (95) [----] for $i1 in 1:3 loop (95) [----] [SCAL] (1) $SEV_6[$i1] = pulse2m.twomPulse.greaterPositive[$i1].u1 > pulse2m.twomPulse.greaterPositive[$i1].u2 ($RES_EVT_327) (95) [----] end for; (96) [FOR-] (3) ($RES_EVT_328) (96) [----] for $i1 in 1:3 loop (96) [----] [SCAL] (1) $SEV_7[$i1] = pulse2m.twomPulse.negativeThreshold[$i1].u < pulse2m.twomPulse.negativeThreshold[$i1].threshold ($RES_EVT_329) (96) [----] end for; (97) [FOR-] (3) ($RES_SIM_41) (97) [----] for $i1 in 1:3 loop (97) [----] [SCAL] (1) pulse2m.voltageSensor.potentialSensor[$i1].p.i = 0.0 ($RES_SIM_42) (97) [----] end for; (98) [ARRY] (3) rectifier.andCondition_p.u1 = rectifier.fire_p ($RES_SIM_241) (99) [FOR-] (3) ($RES_SIM_43) (99) [----] for $i1 in 1:3 loop (99) [----] [SCAL] (1) pulse2m.twomPulse.realPassThrough[$i1].y = pulse2m.twomPulse.realPassThrough[$i1].u ($RES_SIM_44) (99) [----] end for; (100) [SCAL] (1) rectifier.enableLogic.internalEnable[3] = rectifier.andCondition_n[3].u2 ($RES_SIM_242) (101) [SCAL] (1) rectifier.powerDC = rectifier.vDC * rectifier.iDC ($RES_BND_293) (102) [SCAL] (1) rectifier.enableLogic.internalEnable[3] = rectifier.andCondition_p[3].u2 ($RES_SIM_243) (103) [SCAL] (1) pulse2m.twomPulse.limiter.y = homotopy(smooth(0, if $SEV_2 then pulse2m.twomPulse.limiter.uMax else if $SEV_3 then pulse2m.twomPulse.limiter.uMin else pulse2m.twomPulse.constantconstantFiringAngle.k), pulse2m.twomPulse.constantconstantFiringAngle.k) ($RES_SIM_45) (104) [ARRY] (3) rectifier.thyristor_p.off = rectifier.thyristor_p.idealThyristor.off ($RES_BND_294) (105) [SCAL] (1) rectifier.enableLogic.internalEnable[2] = rectifier.andCondition_n[2].u2 ($RES_SIM_244) (106) [ARRY] (3) rectifier.thyristor_n.off = rectifier.thyristor_n.idealThyristor.off ($RES_BND_295) (107) [SCAL] (1) rectifier.enableLogic.internalEnable[2] = rectifier.andCondition_p[2].u2 ($RES_SIM_245) (108) [SCAL] (1) star.plug_p.pin[2].i + sineVoltage_p.plug_n.pin[2].i + sineVoltage_n.plug_p.pin[2].i = 0.0 ($RES_SIM_160) (109) [SCAL] (1) rectifier.enableLogic.internalEnable[1] = rectifier.andCondition_n[1].u2 ($RES_SIM_246) (110) [SCAL] (1) star.plug_p.pin[1].i + sineVoltage_p.plug_n.pin[1].i + sineVoltage_n.plug_p.pin[1].i = 0.0 ($RES_SIM_161) (111) [ARRY] (3) pulse2m.twomPulse.replicator.y = {pulse2m.twomPulse.gain.y for $i1 in 1:3} ($RES_SIM_48) (112) [SCAL] (1) rectifier.enableLogic.internalEnable[1] = rectifier.andCondition_p[1].u2 ($RES_SIM_247) (113) [SCAL] (1) star.plug_p.pin[3].v = sineVoltage_n.plug_p.pin[3].v ($RES_SIM_162) (114) [SCAL] (1) pulse2m.twomPulse.gain.y = pulse2m.twomPulse.gain.k * pulse2m.twomPulse.limiter.y ($RES_SIM_49) (115) [ARRY] (3) rectifier.fire_n = rectifier.andCondition_n.u1 ($RES_SIM_248) (116) [SCAL] (1) star.plug_p.pin[3].v = sineVoltage_p.plug_n.pin[3].v ($RES_SIM_163) (117) [ARRY] (3) rectifier.andCondition_n.y = rectifier.thyristor_n.fire ($RES_SIM_249) (118) [SCAL] (1) star.plug_p.pin[2].v = sineVoltage_n.plug_p.pin[2].v ($RES_SIM_164) (119) [SCAL] (1) star.plug_p.pin[2].v = sineVoltage_p.plug_n.pin[2].v ($RES_SIM_165) (120) [SCAL] (1) star.plug_p.pin[1].v = sineVoltage_n.plug_p.pin[1].v ($RES_SIM_166) (121) [SCAL] (1) star.plug_p.pin[1].v = sineVoltage_p.plug_n.pin[1].v ($RES_SIM_167) (122) [SCAL] (1) rectifier.ac_p.pin[3].i + sineVoltage_p.plug_p.pin[3].i + pulse2m.ac.pin[3].i = 0.0 ($RES_SIM_168) (123) [SCAL] (1) rectifier.ac_p.pin[2].i + sineVoltage_p.plug_p.pin[2].i + pulse2m.ac.pin[2].i = 0.0 ($RES_SIM_169) (124) [FOR-] (3) ($RES_EVT_330) (124) [----] for $i1 in 1:3 loop (124) [----] [SCAL] (1) $SEV_8[$i1] = pulse2m.twomPulse.positiveThreshold[$i1].u > pulse2m.twomPulse.positiveThreshold[$i1].threshold ($RES_EVT_331) (124) [----] end for; (125) [FOR-] (3) ($RES_EVT_332) (125) [----] for $i1 in 1:3 loop (125) [----] [SCAL] (1) $SEV_9[$i1] = rectifier.thyristor_n.idealThyristor[$i1].s < 0.0 ($RES_EVT_333) (125) [----] end for; (126) [FOR-] (3) ($RES_EVT_334) (126) [----] for $i1 in 1:3 loop (126) [----] [SCAL] (1) $SEV_10[$i1] = $TEV_8 and not rectifier.thyristor_n.idealThyristor[$i1].fire ($RES_EVT_335) (126) [----] end for; (127) [FOR-] (3) ($RES_EVT_336) (127) [----] for $i1 in 1:3 loop (127) [----] [SCAL] (1) $SEV_11[$i1] = $SEV_9[$i1] or $SEV_10[$i1] ($RES_EVT_337) (127) [----] end for; (128) [FOR-] (3) ($RES_EVT_338) (128) [----] for $i1 in 1:3 loop (128) [----] [SCAL] (1) $SEV_12[$i1] = rectifier.thyristor_p.idealThyristor[$i1].s < 0.0 ($RES_EVT_339) (128) [----] end for; (129) [FOR-] (3) ($RES_SIM_50) (129) [----] for $i1 in 1:3 loop (129) [----] [SCAL] (1) pulse2m.twomPulse.negativeEqual[$i1].y = $SEV_5[$i1] ($RES_SIM_51) (129) [----] end for; (130) [ARRY] (3) rectifier.andCondition_p.y = rectifier.thyristor_p.fire ($RES_SIM_250) (131) [FOR-] (3) ($RES_SIM_52) (131) [----] for $i1 in 1:3 loop (131) [----] [SCAL] (1) pulse2m.twomPulse.greaterPositive[$i1].y = $SEV_6[$i1] ($RES_SIM_53) (131) [----] end for; (132) [FOR-] (3) ($RES_SIM_251) (132) [----] for $i1 in 1:3 loop (132) [----] [SCAL] (1) rectifier.thyristor_n.plug_n.pin[$i1].i + rectifier.star_n.plug_p.pin[$i1].i = 0.0 ($RES_SIM_252) (132) [----] end for; (133) [FOR-] (3) ($RES_SIM_54) (133) [----] for $i1 in 1:3 loop (133) [----] [SCAL] (1) pulse2m.twomPulse.timerNegative[$i1].y = if pulse2m.twomPulse.timerNegative[$i1].u then time - pulse2m.twomPulse.timerNegative[$i1].entryTime else 0.0 ($RES_SIM_55) (133) [----] end for; (134) [ARRY] (3) rectifier.thyristor_n.plug_n.pin.v = rectifier.star_n.plug_p.pin.v ($RES_SIM_253) (135) [FOR-] (3) ($RES_SIM_254) (135) [----] for $i1 in 1:3 loop (135) [----] [SCAL] (1) rectifier.thyristor_n.plug_p.pin[$i1].i - rectifier.ac_n.pin[$i1].i = 0.0 ($RES_SIM_255) (135) [----] end for; (136) [FOR-] (3) ($RES_SIM_56) (136) [----] for $i1 in 1:3 loop (136) [----] [WHEN] (1)when pulse2m.twomPulse.timerNegative[$i1].u then (136) [----] [----] pulse2m.twomPulse.timerNegative[$i1].entryTime := time (136) [----] [----] end when; (136) [----] end for; (137) [SCAL] (1) rectifier.ac_p.pin[1].i + sineVoltage_p.plug_p.pin[1].i + pulse2m.ac.pin[1].i = 0.0 ($RES_SIM_170) (138) [ARRY] (3) rectifier.thyristor_n.plug_p.pin.v = rectifier.ac_n.pin.v ($RES_SIM_256) (139) [SCAL] (1) sineVoltage_p.plug_p.pin[3].v = pulse2m.ac.pin[3].v ($RES_SIM_171) (140) [FOR-] (3) ($RES_SIM_58) (140) [----] for $i1 in 1:3 loop (140) [----] [SCAL] (1) pulse2m.twomPulse.timerPositive[$i1].y = if pulse2m.twomPulse.timerPositive[$i1].u then time - pulse2m.twomPulse.timerPositive[$i1].entryTime else 0.0 ($RES_SIM_59) (140) [----] end for; (141) [FOR-] (3) ($RES_SIM_257) (141) [----] for $i1 in 1:3 loop (141) [----] [SCAL] (1) rectifier.thyristor_p.plug_p.pin[$i1].i - rectifier.ac_p.pin[$i1].i = 0.0 ($RES_SIM_258) (141) [----] end for; (142) [SCAL] (1) sineVoltage_p.plug_p.pin[3].v = rectifier.ac_p.pin[3].v ($RES_SIM_172) (143) [SCAL] (1) sineVoltage_p.plug_p.pin[2].v = pulse2m.ac.pin[2].v ($RES_SIM_173) (144) [ARRY] (3) rectifier.ac_p.pin.v = rectifier.thyristor_p.plug_p.pin.v ($RES_SIM_259) (145) [SCAL] (1) sineVoltage_p.plug_p.pin[2].v = rectifier.ac_p.pin[2].v ($RES_SIM_174) (146) [SCAL] (1) sineVoltage_p.plug_p.pin[1].v = pulse2m.ac.pin[1].v ($RES_SIM_175) (147) [SCAL] (1) sineVoltage_p.plug_p.pin[1].v = rectifier.ac_p.pin[1].v ($RES_SIM_176) (148) [ARRY] (3) pulse2m.fire_p = rectifier.fire_p ($RES_SIM_177) (149) [FOR-] (3) ($RES_EVT_340) (149) [----] for $i1 in 1:3 loop (149) [----] [SCAL] (1) $SEV_13[$i1] = $TEV_9 and not rectifier.thyristor_p.idealThyristor[$i1].fire ($RES_EVT_341) (149) [----] end for; (150) [FOR-] (3) ($RES_EVT_342) (150) [----] for $i1 in 1:3 loop (150) [----] [SCAL] (1) $SEV_14[$i1] = $SEV_12[$i1] or $SEV_13[$i1] ($RES_EVT_343) (150) [----] end for; (151) [FOR-] (3) ($RES_EVT_344) (151) [----] for $i1 in 1:3 loop (151) [----] [SCAL] (1) $SEV_15[$i1] = rectifier.andCondition_n[$i1].u1 and rectifier.andCondition_n[$i1].u2 ($RES_EVT_345) (151) [----] end for; (152) [FOR-] (3) ($RES_EVT_346) (152) [----] for $i1 in 1:3 loop (152) [----] [SCAL] (1) $SEV_16[$i1] = rectifier.andCondition_p[$i1].u1 and rectifier.andCondition_p[$i1].u2 ($RES_EVT_347) (152) [----] end for; (153) [FOR-] (3) ($RES_EVT_348) (153) [----] for $i1 in 1:3 loop (153) [----] [SCAL] (1) $SEV_17[$i1] = time < sineVoltage_p.sineVoltage[$i1].signalSource.startTime ($RES_EVT_349) (153) [----] end for; (154) [FOR-] (3) ($RES_SIM_60) (154) [----] for $i1 in 1:3 loop (154) [----] [WHEN] (1)when pulse2m.twomPulse.timerPositive[$i1].u then (154) [----] [----] pulse2m.twomPulse.timerPositive[$i1].entryTime := time (154) [----] [----] end when; (154) [----] end for; (155) [FOR-] (3) ($RES_SIM_102) (155) [----] for $i1 in 1:3 loop (155) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].LossPower = rectifier.thyristor_n.idealThyristor[$i1].v * rectifier.thyristor_n.idealThyristor[$i1].i ($RES_SIM_103) (155) [----] end for; (156) [FOR-] (3) ($RES_SIM_62) (156) [----] for $i1 in 1:3 loop (156) [----] [SCAL] (1) pulse2m.twomPulse.negativeThreshold[$i1].y = $SEV_7[$i1] ($RES_SIM_63) (156) [----] end for; (157) [FOR-] (3) ($RES_SIM_262) (157) [----] for $i1 in 1:3 loop (157) [----] [SCAL] (1) rectifier.thyristor_p.plug_n.pin[$i1].i + rectifier.star_p.plug_p.pin[$i1].i = 0.0 ($RES_SIM_263) (157) [----] end for; (158) [FOR-] (3) ($RES_SIM_104) (158) [----] for $i1 in 1:3 loop (158) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].i = rectifier.thyristor_n.idealThyristor[$i1].s * (if rectifier.thyristor_n.idealThyristor[$i1].off then rectifier.thyristor_n.idealThyristor[$i1].Goff else 1.0) + rectifier.thyristor_n.idealThyristor[$i1].Goff * rectifier.thyristor_n.idealThyristor[$i1].Vknee ($RES_SIM_105) (158) [----] end for; (159) [FOR-] (3) ($RES_SIM_64) (159) [----] for $i1 in 1:3 loop (159) [----] [SCAL] (1) pulse2m.twomPulse.positiveThreshold[$i1].y = $SEV_8[$i1] ($RES_SIM_65) (159) [----] end for; (160) [ARRY] (3) rectifier.thyristor_p.plug_n.pin.v = rectifier.star_p.plug_p.pin.v ($RES_SIM_264) (161) [FOR-] (3) ($RES_SIM_106) (161) [----] for $i1 in 1:3 loop (161) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].v = rectifier.thyristor_n.idealThyristor[$i1].s * (if rectifier.thyristor_n.idealThyristor[$i1].off then 1.0 else rectifier.thyristor_n.idealThyristor[$i1].Ron) + rectifier.thyristor_n.idealThyristor[$i1].Vknee ($RES_SIM_107) (161) [----] end for; (162) [ARRY] (3) rectifier.thyristor_n.fire = rectifier.thyristor_n.idealThyristor.fire ($RES_SIM_265) (163) [FOR-] (3) ($RES_SIM_266) (163) [----] for $i1 in 1:3 loop (163) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].n.i - rectifier.thyristor_n.plug_n.pin[$i1].i = 0.0 ($RES_SIM_267) (163) [----] end for; (164) [FOR-] (3) ($RES_SIM_108) (164) [----] for $i1 in 1:3 loop (164) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].off = $SEV_11[$i1] ($RES_SIM_109) (164) [----] end for; (165) [SCAL] (1) $DER.meanCurrent.x = -currentSensor.n.i ($RES_SIM_69) (166) [ARRY] (3) rectifier.thyristor_n.idealThyristor.n.v = rectifier.thyristor_n.plug_n.pin.v ($RES_SIM_268) (167) [FOR-] (3) ($RES_SIM_269) (167) [----] for $i1 in 1:3 loop (167) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].p.i - rectifier.thyristor_n.plug_p.pin[$i1].i = 0.0 ($RES_SIM_270) (167) [----] end for; (168) [FOR-] (3) ($RES_SIM_188) (168) [----] for $i1 in 1:3 loop (168) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].n.i - sineVoltage_n.plug_n.pin[$i1].i = 0.0 ($RES_SIM_189) (168) [----] end for; (169) [SCAL] (1) -star.pin_n.i = sum(star.plug_p.pin.i) ($RES_$AUX_307) (170) [FOR-] (3) ($RES_$AUX_305) (170) [----] for $i1 in 1:3 loop (170) [----] [SCAL] (1) $FUN_2[$i1] = sin(sineVoltage_p.sineVoltage[$i1].signalSource.freqHz * 6.283185307179586 * (time - sineVoltage_p.sineVoltage[$i1].signalSource.startTime) + sineVoltage_p.sineVoltage[$i1].signalSource.phase) ($RES_$AUX_306) (170) [----] end for; (171) [SCAL] (1) -rectifier.star_p.pin_n.i = sum(rectifier.star_p.plug_p.pin.i) ($RES_$AUX_304) (172) [SCAL] (1) -rectifier.star_n.pin_n.i = sum(rectifier.star_n.plug_p.pin.i) ($RES_$AUX_303) (173) [SCAL] (1) $FUN_5 = sum(rectifier.thyristor_p.idealThyristor.LossPower) ($RES_$AUX_302) (174) [SCAL] (1) $FUN_6 = sum(rectifier.thyristor_n.idealThyristor.LossPower) ($RES_$AUX_301) (175) [SCAL] (1) rootMeanSquareVoltage.product.y = product(rootMeanSquareVoltage.product.u) ($RES_$AUX_300) (176) [ARRY] (3) rectifier.thyristor_p.i = rectifier.thyristor_p.plug_p.pin.i ($RES_SIM_110) (177) [ARRY] (3) rectifier.thyristor_p.v = rectifier.thyristor_p.plug_p.pin.v - rectifier.thyristor_p.plug_n.pin.v ($RES_SIM_111) (178) [FOR-] (3) ($RES_SIM_112) (178) [----] for $i1 in 1:3 loop (178) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].i = rectifier.thyristor_p.idealThyristor[$i1].p.i ($RES_SIM_113) (178) [----] end for; (179) [ARRY] (3) rectifier.thyristor_n.plug_p.pin.v = rectifier.thyristor_n.idealThyristor.p.v ($RES_SIM_271) (180) [ARRY] (3) rectifier.thyristor_p.fire = rectifier.thyristor_p.idealThyristor.fire ($RES_SIM_272) (181) [FOR-] (3) ($RES_SIM_114) (181) [----] for $i1 in 1:3 loop (181) [----] [SCAL] (1) 0.0 = rectifier.thyristor_p.idealThyristor[$i1].p.i + rectifier.thyristor_p.idealThyristor[$i1].n.i ($RES_SIM_115) (181) [----] end for; (182) [FOR-] (3) ($RES_$AUX_297) (182) [----] for $i1 in 1:3 loop (182) [----] [SCAL] (1) $FUN_9[$i1] = sin(sineVoltage_n.sineVoltage[$i1].signalSource.freqHz * 6.283185307179586 * (time - sineVoltage_n.sineVoltage[$i1].signalSource.startTime) + sineVoltage_n.sineVoltage[$i1].signalSource.phase) ($RES_$AUX_298) (182) [----] end for; (183) [FOR-] (3) ($RES_SIM_273) (183) [----] for $i1 in 1:3 loop (183) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].n.i - rectifier.thyristor_p.plug_n.pin[$i1].i = 0.0 ($RES_SIM_274) (183) [----] end for; (184) [SCAL] (1) rectifier.powerTotalAC = sum(rectifier.powerAC) ($RES_$AUX_296) (185) [FOR-] (3) ($RES_SIM_116) (185) [----] for $i1 in 1:3 loop (185) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].v = rectifier.thyristor_p.idealThyristor[$i1].p.v - rectifier.thyristor_p.idealThyristor[$i1].n.v ($RES_SIM_117) (185) [----] end for; (186) [SCAL] (1) $DER.rootMeanSquareVoltage.mean.x = rootMeanSquareVoltage.product.y ($RES_SIM_76) (187) [ARRY] (3) rectifier.thyristor_p.idealThyristor.n.v = rectifier.thyristor_p.plug_n.pin.v ($RES_SIM_275) (188) [ARRY] (3) sineVoltage_n.sineVoltage.n.v = sineVoltage_n.plug_n.pin.v ($RES_SIM_190) (189) [FOR-] (3) ($RES_SIM_276) (189) [----] for $i1 in 1:3 loop (189) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].p.i - rectifier.thyristor_p.plug_p.pin[$i1].i = 0.0 ($RES_SIM_277) (189) [----] end for; (190) [FOR-] (3) ($RES_SIM_191) (190) [----] for $i1 in 1:3 loop (190) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].p.i - sineVoltage_n.plug_p.pin[$i1].i = 0.0 ($RES_SIM_192) (190) [----] end for; (191) [ARRY] (3) rectifier.thyristor_p.plug_p.pin.v = rectifier.thyristor_p.idealThyristor.p.v ($RES_SIM_278) (192) [ARRY] (3) sineVoltage_n.sineVoltage.p.v = sineVoltage_n.plug_p.pin.v ($RES_SIM_193) (193) [ARRY] (3) pulse2m.twomPulse.fire_p = pulse2m.fire_p ($RES_SIM_194) (194) [ARRY] (3) pulse2m.twomPulse.fire_n = pulse2m.fire_n ($RES_SIM_195) (195) [ARRY] (3) pulse2m.voltageSensor.phi = pulse2m.gain.u ($RES_SIM_196) (196) [ARRY] (3) pulse2m.gain.y = pulse2m.twomPulse.v ($RES_SIM_197) (197) [FOR-] (3) ($RES_SIM_198) (197) [----] for $i1 in 1:3 loop (197) [----] [SCAL] (1) pulse2m.delta.plug_n.pin[$i1].i - pulse2m.ac.pin[$i1].i = 0.0 ($RES_SIM_199) (197) [----] end for; (198) [ARRY] (3) pulse2m.ac.pin.v = pulse2m.delta.plug_n.pin.v ($RES_SIM_200) (199) [FOR-] (3) ($RES_SIM_201) (199) [----] for $i1 in 1:3 loop (199) [----] [SCAL] (1) pulse2m.voltageSensor.plug_p.pin[$i1].i + pulse2m.delta.plug_p.pin[$i1].i = 0.0 ($RES_SIM_202) (199) [----] end for; (200) [ARRY] (3) pulse2m.voltageSensor.plug_p.pin.v = pulse2m.delta.plug_p.pin.v ($RES_SIM_203)