Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr Modelica_3.2.2_Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Modelica_3.2.2_Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2") translateModel(Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Modelica_3.2.2_Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001165/0.001165, allocations: 109.1 kB / 17.75 MB, free: 5.352 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001144/0.001144, allocations: 188.6 kB / 18.68 MB, free: 4.43 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.292/1.292, allocations: 205.1 MB / 224.6 MB, free: 12.25 MB / 190.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.061e-05/2.062e-05, allocations: 2.281 kB / 328.5 MB, free: 3.352 MB / 270.1 MB Notification: Performance of NFInst.instantiate(Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2): time 0.02037/0.0204, allocations: 21.78 MB / 350.3 MB, free: 13.47 MB / 302.1 MB Notification: Performance of NFInst.instExpressions: time 0.01255/0.033, allocations: 9.973 MB / 360.3 MB, free: 3.477 MB / 302.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0009822/0.03402, allocations: 27.81 kB / 360.3 MB, free: 3.449 MB / 302.1 MB Notification: Performance of NFTyping.typeComponents: time 0.001067/0.03509, allocations: 401.5 kB / 360.7 MB, free: 3.055 MB / 302.1 MB Notification: Performance of NFTyping.typeBindings: time 0.003156/0.03826, allocations: 1.419 MB / 362.1 MB, free: 1.629 MB / 302.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.005653/0.04392, allocations: 2.633 MB / 364.7 MB, free: 14.99 MB / 318.1 MB Notification: Performance of NFFlatten.flatten: time 0.002994/0.04693, allocations: 2.731 MB / 367.5 MB, free: 12.25 MB / 318.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0008276/0.04776, allocations: 0.6628 MB / 368.1 MB, free: 11.57 MB / 318.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.001549/0.04932, allocations: 1.094 MB / 369.2 MB, free: 10.48 MB / 318.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.001033/0.05037, allocations: 0.9072 MB / 370.1 MB, free: 9.566 MB / 318.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0001249/0.0505, allocations: 91.94 kB / 370.2 MB, free: 9.477 MB / 318.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.003061/0.05357, allocations: 1.72 MB / 371.9 MB, free: 7.754 MB / 318.1 MB Notification: Performance of combineBinaries: time 0.001482/0.05507, allocations: 1.889 MB / 373.8 MB, free: 5.848 MB / 318.1 MB Notification: Performance of replaceArrayConstructors: time 0.0007692/0.05585, allocations: 1.143 MB / 375 MB, free: 4.691 MB / 318.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0002457/0.0561, allocations: 155.6 kB / 375.1 MB, free: 4.539 MB / 318.1 MB Notification: Performance of FrontEnd: time 0.0002018/0.05631, allocations: 39.73 kB / 375.2 MB, free: 4.5 MB / 318.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 164 (133) * Number of variables: 172 (134) Notification: Performance of Bindings: time 0.1637/0.22, allocations: 4.87 MB / 380 MB, free: 18.81 MB / 318.1 MB Notification: Performance of FunctionAlias: time 0.0009621/0.221, allocations: 495.8 kB / 380.5 MB, free: 18.76 MB / 318.1 MB Notification: Performance of Early Inline: time 0.00309/0.2241, allocations: 2.645 MB / 383.2 MB, free: 18.61 MB / 318.1 MB Notification: Performance of simplify1: time 0.0003149/0.2244, allocations: 179.4 kB / 383.3 MB, free: 18.61 MB / 318.1 MB Notification: Performance of Alias: time 0.002417/0.2268, allocations: 2.47 MB / 385.8 MB, free: 17.91 MB / 318.1 MB Notification: Performance of simplify2: time 0.0001839/0.227, allocations: 155.3 kB / 386 MB, free: 17.91 MB / 318.1 MB Notification: Performance of Events: time 0.0006002/0.2276, allocations: 0.5764 MB / 386.5 MB, free: 17.78 MB / 318.1 MB Notification: Performance of Detect States: time 0.0006426/0.2283, allocations: 0.6614 MB / 387.2 MB, free: 17.7 MB / 318.1 MB Notification: Performance of Partitioning: time 0.0008703/0.2291, allocations: 0.972 MB / 388.2 MB, free: 17.34 MB / 318.1 MB Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (112/157) **************************** (1) [ALGB] (1) Real[1] tank1.heatTransfer.surfaceAreas = {sqrt(3.141592653589793 * tank1.crossArea) * 2.0 * tank1.level + tank1.crossArea} (2) [ALGB] (1) protected Real[1] pipe2.flowModel.diameters = 0.5 * (pipe2.flowModel.dimensions[2:2] + pipe2.flowModel.dimensions[1:1]) (3) [ALGB] (2) final Real[2] pipe1.flowModel.roughnesses = {pipe1.roughness, pipe1.roughness} (min = {0.0 for $i1 in 1:2}) (4) [ALGB] (1) flow Real pipe1.port_b.m_flow (min = -1e5, max = 1e60) (5) [ALGB] (2) protected Real[2] tank1.portsData_height = tank1.portsData.height (6) [ALGB] (1) Real tank1.medium.state.T (start = 288.15, min = 1.0, max = 1e4, nominal = 300.0) (7) [ALGB] (1) Real $FUN_10 (8) [DISC] (2) Boolean[2] $SEV_0[$i1] (9) [ALGB] (1) Real[1] tank1.heatTransfer.Q_flows (10) [ALGB] (1) Real[1] pipe2.flowModel.Is (11) [ALGB] (2) final Real[2] pipe2.flowModel.roughnesses = {pipe2.roughness, pipe2.roughness} (min = {0.0 for $i1 in 1:2}) (12) [ALGB] (1) Real tank1.mb_flow (13) [ALGB] (2) final Real[2] pipe1.flowModel.dimensions = {(4.0 * pipe1.crossArea) / pipe1.perimeter, (4.0 * pipe1.crossArea) / pipe1.perimeter} (14) [ALGB] (2) protected Real[2] tank1.zetas_out (15) [ALGB] (2) flow Real[2] tank1.ports.m_flow (start = {0.0 for $i1 in 1:2}, min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (16) [ALGB] (1) final Real[1] pipe1.flowModel.dheights = {pipe1.height_ab} (17) [ALGB] (1) Real pipe2.port_b.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (18) [DISC] (2) Boolean[2] $SEV_11[$i1] (19) [DER-] (1) Real $DER.tank1.U (20) [ALGB] (1) Real[1] pipe2.flowModel.Fs_p (21) [ALGB] (1) Real tank1.level (start = tank1.level_start, StateSelect = prefer) (22) [ALGB] (1) Real pipe1.port_a.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (23) [ALGB] (1) Real[1] pipe2.flowModel.Fs_fg (24) [ALGB] (1) flow Real[1] tank1.heatTransfer.heatPorts.Q_flow (25) [ALGB] (2) Real[2] tank1.port_b_H_flow_bottom (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (26) [DISC] (2) Boolean[2] $SEV_14[$i1] (27) [ALGB] (1) Real[1] pipe2.flowModel.pathLengths_internal = pipe2.flowModel.pathLengths (28) [ALGB] (1) stream Real pipe2.port_b.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (29) [ALGB] (1) stream Real pipe1.port_a.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (30) [ALGB] (1) Real tank1.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (31) [ALGB] (1) final Real[1] pipe2.flowModel.pathLengths = {pipe2.length} (32) [ALGB] (1) Real $FUN_8 (33) [DISC] (2) protected Boolean[2] tank1.aboveLevel (34) [ALGB] (1) flow Real pipe2.port_b.m_flow (min = -1e5, max = 1e60) (35) [ALGB] (2) final Real[2] pipe2.flowModel.dimensions = {(4.0 * pipe2.crossArea) / pipe2.perimeter, (4.0 * pipe2.crossArea) / pipe2.perimeter} (36) [ALGB] (1) Real $FUN_6 (37) [ALGB] (1) Real $FUN_5 (38) [ALGB] (4) input Real[2, 2] pipe1.flowModel.states.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (39) [ALGB] (1) Real $FUN_4 (40) [ALGB] (1) protected Real[1] pipe1.flowModel.diameters = 0.5 * (pipe1.flowModel.dimensions[2:2] + pipe1.flowModel.dimensions[1:1]) (41) [ALGB] (1) Real $FUN_3 (42) [ALGB] (2) protected Real[2] tank1.portsData_diameter2 (43) [ALGB] (1) Real $FUN_2 (44) [ALGB] (2) protected Real[2] tank1.bottomArea (45) [DER-] (1) Real $DER.tank1.m (46) [ALGB] (1) final input Real[1, 1] tank1.heatTransfer.states.p = {tank1.medium.state.p} (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (47) [DISC] (2) Boolean[2] $SEV_9[$i1] (48) [ALGB] (2) Real[2] pipe2.flowModel.vs = {(-pipe2.port_b.m_flow) / (pipe2.flowModel.crossAreas[1] * Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.Medium.density(pipe2.flowModel.states[1])), -pipe2.port_b.m_flow / (Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.Medium.density(pipe2.flowModel.states[2]) * pipe2.flowModel.crossAreas[2])} / pipe2.nParallel (49) [ALGB] (1) Real[1] pipe1.flowModel.Fs_p (50) [ALGB] (1) Real[1] ambient_fixed.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (51) [DISC] (2) Boolean[2] $SEV_10[$i1] (52) [ALGB] (1) flow Real[1] ambient_fixed.ports.m_flow (min = {-1e60}, max = {1e60}) (53) [ALGB] (1) Real[1] pipe2.flowModel.Ib_flows (54) [ALGB] (1) Real[1] pipe1.flowModel.rhos_act (start = {1.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (55) [DISC] (1) Boolean $SEV_18 (56) [ALGB] (2) protected Real[2] tank1.portsData_diameter = tank1.portsData.diameter (57) [ALGB] (4) input Real[2, 2] pipe2.flowModel.states.T (start = {288.15 for $i1 in 1:2}, min = {1.0 for $i1 in 1:2}, max = {1e4 for $i1 in 1:2}, nominal = {300.0 for $i1 in 1:2}) (58) [DISC] (1) Boolean $SEV_17 (59) [DISC] (1) Boolean $SEV_16 (60) [ALGB] (2) protected Real[2] tank1.levelAbovePort (61) [DISC] (1) Boolean $SEV_15 (62) [ALGB] (2) final Real[2] pipe1.flowModel.crossAreas = {pipe1.crossArea, pipe1.crossArea} (63) [ALGB] (1) Real[1] pipe1.flowModel.Fs_fg (64) [ALGB] (4) input Real[2, 2] pipe1.flowModel.states.T (start = {288.15 for $i1 in 1:2}, min = {1.0 for $i1 in 1:2}, max = {1e4 for $i1 in 1:2}, nominal = {300.0 for $i1 in 1:2}) (65) [ALGB] (1) Real[1] pipe2.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (66) [ALGB] (1) flow Real[1] ambient_fixed1.ports.m_flow (min = {-1e60}, max = {1e60}) (67) [DISC] (2) Boolean[2] $SEV_13[$i1] (68) [ALGB] (1) Real[1] pipe1.flowModel.Is (69) [ALGB] (1) Real[1] pipe2.flowModel.rhos_act (start = {1.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (70) [ALGB] (1) Real[1] pipe1.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (71) [ALGB] (1) final input Real[1, 1] tank1.heatTransfer.states.T = {tank1.medium.state.T} (start = {288.15 for $i1 in 1:1}, min = {1.0 for $i1 in 1:1}, max = {1e4 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (72) [ALGB] (1) Real[1] pipe2.flowModel.dps_fg (start = {pipe2.flowModel.p_a_start - pipe2.flowModel.p_b_start for $i1 in 1:1}) (73) [ALGB] (1) stream Real[1] ambient_fixed1.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (74) [ALGB] (1) Real[1] pipe1.flowModel.Ib_flows (75) [ALGB] (1) stream Real[1] ambient_fixed.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (76) [ALGB] (1) Real[1] pipe2.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (77) [ALGB] (2) protected Real[2] tank1.portsData_height2 (78) [ALGB] (2) Real[2] pipe2.flowModel.rhos = {Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.flowModel.Medium.density(pipe2.flowModel.states[$i1]) for $i1 in 1:2} (start = {1.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {1.0 for $i1 in 1:2}) (79) [ALGB] (1) Real tank1.Qb_flow (80) [ALGB] (1) Real pipe1.port_b.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (81) [ALGB] (1) Real[1] pipe1.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (82) [ALGB] (2) Real[2] pipe2.flowModel.mus = {Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.flowModel.Medium.dynamicViscosity(pipe2.flowModel.states[$i1]) for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (83) [ALGB] (1) Real tank1.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - tank1.medium.T_degC)) (84) [ALGB] (1) Real[1] tank1.heatTransfer.Ts = {Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.tank1.heatTransfer.Medium.temperature(tank1.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (85) [ALGB] (2) stream Real[2] tank1.ports.h_outflow (min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (86) [DISC] (2) Boolean[2] $SEV_8[$i1] (87) [ALGB] (2) Real[2] pipe1.flowModel.mus = {Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.flowModel.Medium.dynamicViscosity(pipe1.flowModel.states[$i1]) for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (88) [DISC] (1) Boolean $SEV_7 (89) [ALGB] (1) Real pipe2.port_a.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (90) [DISC] (1) Boolean $SEV_5 (91) [ALGB] (2) Real[2] tank1.ports.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (92) [ALGB] (4) input Real[2, 2] pipe2.flowModel.states.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (93) [ALGB] (2) protected Real[2] tank1.ports_emptyPipeHysteresis (min = {0.0 for $i1 in 1:2}) (94) [ALGB] (1) Real tank1.Hb_flow (95) [DISC] (1) Boolean $TEV_0 (96) [ALGB] (1) Real[1] pipe1.flowModel.dps_fg (start = {pipe1.flowModel.p_a_start - pipe1.flowModel.p_b_start for $i1 in 1:1}) (97) [ALGB] (1) final Real[1] pipe1.flowModel.pathLengths = {pipe1.length} (98) [ALGB] (1) Real[1] ambient_fixed1.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (99) [DISC] (2) Boolean[2] $SEV_12[$i1] (100) [ALGB] (1) final Real tank1.fluidVolume = tank1.fluidVolume (101) [ALGB] (1) Real[1] pipe1.flowModel.Res_turbulent_internal = pipe1.flowModel.Re_turbulent * {1.0 for $i1 in 1:1} (102) [ALGB] (2) Real[2] pipe1.flowModel.vs = {(-pipe1.port_b.m_flow) / (pipe1.flowModel.crossAreas[1] * Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.Medium.density(pipe1.flowModel.states[1])), -pipe1.port_b.m_flow / (Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.Medium.density(pipe1.flowModel.states[2]) * pipe1.flowModel.crossAreas[2])} / pipe1.nParallel (103) [ALGB] (2) Real[2] pipe1.flowModel.rhos = {Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.flowModel.Medium.density(pipe1.flowModel.states[$i1]) for $i1 in 1:2} (start = {1.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {1.0 for $i1 in 1:2}) (104) [ALGB] (2) final Real[2] pipe2.flowModel.crossAreas = {pipe2.crossArea, pipe2.crossArea} (105) [ALGB] (1) stream Real pipe2.port_a.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (106) [ALGB] (1) Real[1] tank1.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (107) [ALGB] (1) stream Real pipe1.port_b.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (108) [ALGB] (1) protected Real pipe1.flowModel.dp_fric_nominal = sum({Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.flowModel.WallFriction.pressureLoss_m_flow(pipe1.flowModel.m_flow_nominal / pipe1.flowModel.nParallel, pipe1.flowModel.rho_nominal, pipe1.flowModel.rho_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.pathLengths_internal[1], pipe1.flowModel.diameters[1], ((pipe1.flowModel.crossAreas[2:2] + pipe1.flowModel.crossAreas[1:1]) / 2.0)[1], ((pipe1.flowModel.roughnesses[2:2] + pipe1.flowModel.roughnesses[1:1]) / 2.0)[1], pipe1.flowModel.m_flow_small / pipe1.flowModel.nParallel, pipe1.flowModel.Res_turbulent_internal[1])}) (min = 0.0, nominal = 1e5) (109) [ALGB] (1) final Real[1] pipe2.flowModel.dheights = {pipe2.height_ab} (110) [ALGB] (1) protected Real pipe2.flowModel.dp_fric_nominal = sum({Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.flowModel.WallFriction.pressureLoss_m_flow(pipe2.flowModel.m_flow_nominal / pipe2.flowModel.nParallel, pipe2.flowModel.rho_nominal, pipe2.flowModel.rho_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.pathLengths_internal[1], pipe2.flowModel.diameters[1], ((pipe2.flowModel.crossAreas[2:2] + pipe2.flowModel.crossAreas[1:1]) / 2.0)[1], ((pipe2.flowModel.roughnesses[2:2] + pipe2.flowModel.roughnesses[1:1]) / 2.0)[1], pipe2.flowModel.m_flow_small / pipe2.flowModel.nParallel, pipe2.flowModel.Res_turbulent_internal[1])}) (min = 0.0, nominal = 1e5) (111) [ALGB] (1) Real[1] pipe1.flowModel.pathLengths_internal = pipe1.flowModel.pathLengths (112) [ALGB] (1) Real[1] pipe2.flowModel.Res_turbulent_internal = pipe2.flowModel.Re_turbulent * {1.0 for $i1 in 1:1} System Equations (111/149) **************************** (1) [ARRY] (1) pipe1.flowModel.Ib_flows = {0.0} ($RES_SIM_50) (2) [SCAL] (1) pipe1.flowModel.rhos_act[1] = noEvent(if $SEV_7 then pipe1.flowModel.rhos[1] else pipe1.flowModel.rhos[2]) ($RES_SIM_51) (3) [FOR-] (2) ($RES_BND_146) (3) [----] for $i1 in 1:2 loop (3) [----] [SCAL] (1) pipe1.flowModel.mus[$i1] = 0.001 ($RES_BND_147) (3) [----] end for; (4) [SCAL] (1) pipe1.flowModel.mus_act[1] = noEvent(if $SEV_7 then pipe1.flowModel.mus[1] else pipe1.flowModel.mus[2]) ($RES_SIM_52) (5) [ARRY] (1) pipe1.flowModel.m_flows = {homotopy(({$FUN_4} .* pipe1.flowModel.nParallel)[1], (pipe1.flowModel.m_flow_nominal / pipe1.flowModel.dp_nominal * (pipe1.flowModel.dps_fg - (pipe1.flowModel.g * pipe1.flowModel.dheights) .* pipe1.flowModel.rho_nominal))[1])} ($RES_SIM_53) (6) [ARRY] (1) pipe1.flowModel.pathLengths_internal = pipe1.flowModel.pathLengths ($RES_BND_148) (7) [SCAL] (1) $DER.tank1.m = tank1.mb_flow ($RES_SIM_54) (8) [SCAL] (1) pipe1.flowModel.Res_turbulent_internal[1] = pipe1.flowModel.Re_turbulent ($RES_BND_149) (9) [SCAL] (1) tank1.medium.state.p = tank1.p_ambient ($RES_SIM_90) (10) [SCAL] (1) $DER.tank1.U = tank1.Qb_flow + tank1.Hb_flow ($RES_SIM_55) (11) [SCAL] (1) tank1.medium.state.T = -((-273.15) - tank1.medium.T_degC) ($RES_SIM_91) (12) [SCAL] (1) tank1.U = tank1.m * (4184.0 * ((-273.15) - ((-273.15) - tank1.medium.T_degC))) ($RES_SIM_56) (13) [SCAL] (1) tank1.m = 995.586 * tank1.fluidVolume ($RES_SIM_57) (14) [FOR-] (2) ($RES_SIM_58) (14) [----] for $i1 in 1:2 loop (14) [----] [SCAL] (1) tank1.aboveLevel[$i1] = $SEV_11[$i1] ($RES_SIM_59) (14) [----] end for; (15) [SCAL] (1) ambient_fixed.ports[1].p = ambient_fixed.p ($RES_SIM_98) (16) [SCAL] (1) ambient_fixed.ports[1].h_outflow = 4184.0 * ((-273.15) + ambient_fixed.T) ($RES_SIM_99) (17) [SCAL] (1) $SEV_17 = tank1.m >= 0.0 ($RES_EVT_210) (18) [SCAL] (1) $SEV_18 = tank1.level <= tank1.height ($RES_EVT_211) (19) [SCAL] (1) $FUN_2 = sum(tank1.ports.m_flow) ($RES_$AUX_179) (20) [SCAL] (1) $FUN_3 = sum(tank1.port_b_H_flow_bottom) ($RES_$AUX_178) (21) [SCAL] (1) $FUN_4 = Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.flowModel.WallFriction.massFlowRate_dp_staticHead(pipe1.flowModel.dps_fg[1], pipe1.flowModel.rhos[1], pipe1.flowModel.rhos[2], pipe1.flowModel.mus[1], pipe1.flowModel.mus[2], pipe1.flowModel.pathLengths_internal[1], pipe1.flowModel.diameters[1], (pipe1.flowModel.g * pipe1.flowModel.dheights)[1], (0.5 .* (pipe1.flowModel.crossAreas[1:1] + pipe1.flowModel.crossAreas[2:2]))[1], (0.5 .* (pipe1.flowModel.roughnesses[1:1] + pipe1.flowModel.roughnesses[2:2]))[1], pipe1.flowModel.dp_small, pipe1.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_177) (22) [SCAL] (1) $FUN_5 = Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.flowModel.WallFriction.massFlowRate_dp_staticHead(pipe2.flowModel.dps_fg[1], pipe2.flowModel.rhos[1], pipe2.flowModel.rhos[2], pipe2.flowModel.mus[1], pipe2.flowModel.mus[2], pipe2.flowModel.pathLengths_internal[1], pipe2.flowModel.diameters[1], (pipe2.flowModel.g * pipe2.flowModel.dheights)[1], (0.5 .* (pipe2.flowModel.crossAreas[1:1] + pipe2.flowModel.crossAreas[2:2]))[1], (0.5 .* (pipe2.flowModel.roughnesses[1:1] + pipe2.flowModel.roughnesses[2:2]))[1], pipe2.flowModel.dp_small, pipe2.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_176) (23) [SCAL] (1) $FUN_6 = Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.flowModel.WallFriction.pressureLoss_m_flow(pipe2.flowModel.m_flow_nominal / pipe2.flowModel.nParallel, pipe2.flowModel.rho_nominal, pipe2.flowModel.rho_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.pathLengths_internal[1], pipe2.flowModel.diameters[1], (0.5 .* (pipe2.flowModel.crossAreas[2:2] + pipe2.flowModel.crossAreas[1:1]))[1], (0.5 .* (pipe2.flowModel.roughnesses[2:2] + pipe2.flowModel.roughnesses[1:1]))[1], pipe2.flowModel.m_flow_small / pipe2.flowModel.nParallel, pipe2.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_175) (24) [ARRY] (1) pipe1.flowModel.diameters = 0.5 * (pipe1.flowModel.dimensions[2:2] + pipe1.flowModel.dimensions[1:1]) ($RES_BND_150) (25) [SCAL] (1) pipe2.flowModel.dp_fric_nominal = sum({$FUN_6}) ($RES_$AUX_174) (26) [SCAL] (1) $FUN_8 = Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.flowModel.WallFriction.pressureLoss_m_flow(pipe1.flowModel.m_flow_nominal / pipe1.flowModel.nParallel, pipe1.flowModel.rho_nominal, pipe1.flowModel.rho_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.pathLengths_internal[1], pipe1.flowModel.diameters[1], (0.5 .* (pipe1.flowModel.crossAreas[2:2] + pipe1.flowModel.crossAreas[1:1]))[1], (0.5 .* (pipe1.flowModel.roughnesses[2:2] + pipe1.flowModel.roughnesses[1:1]))[1], pipe1.flowModel.m_flow_small / pipe1.flowModel.nParallel, pipe1.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_173) (27) [ARRY] (2) pipe2.flowModel.vs = {-(0.0010044335697769957 * pipe2.port_b.m_flow) / pipe2.flowModel.crossAreas[1], -(0.0010044335697769957 * pipe2.port_b.m_flow) / pipe2.flowModel.crossAreas[2]} / pipe2.nParallel ($RES_BND_152) (28) [SCAL] (1) pipe1.flowModel.dp_fric_nominal = sum({$FUN_8}) ($RES_$AUX_172) (29) [ARRY] (2) pipe2.flowModel.crossAreas = {pipe2.crossArea, pipe2.crossArea} ($RES_BND_153) (30) [SCAL] (1) $FUN_10 = sqrt(3.141592653589793 * tank1.crossArea) ($RES_$AUX_171) (31) [ARRY] (2) pipe2.flowModel.dimensions = {(4.0 * pipe2.crossArea) / pipe2.perimeter, (4.0 * pipe2.crossArea) / pipe2.perimeter} ($RES_BND_154) (32) [FOR-] (2) ($RES_SIM_60) (32) [----] for $i1 in 1:2 loop (32) [----] [SCAL] (1) tank1.levelAbovePort[$i1] = if tank1.aboveLevel[$i1] then tank1.level - tank1.portsData_height2[$i1] else 0.0 ($RES_SIM_61) (32) [----] end for; (33) [ARRY] (2) pipe2.flowModel.roughnesses = {pipe2.roughness, pipe2.roughness} ($RES_BND_155) (34) [ARRY] (1) pipe2.flowModel.dheights = {pipe2.height_ab} ($RES_BND_156) (35) [FOR-] (2) ($RES_SIM_62) (35) [----] for $i1 in 1:2 loop (35) [----] [SCAL] (1) tank1.ports[$i1].h_outflow = 4184.0 * ((-273.15) - ((-273.15) - tank1.medium.T_degC)) ($RES_SIM_63) (35) [----] end for; (36) [ARRY] (1) pipe2.flowModel.pathLengths = {pipe2.length} ($RES_BND_157) (37) [FOR-] (2) ($RES_BND_158) (37) [----] for $i1 in 1:2 loop (37) [----] [SCAL] (1) pipe2.flowModel.rhos[$i1] = 995.586 ($RES_BND_159) (37) [----] end for; (38) [FOR-] (2) ($RES_SIM_64) (38) [----] for $i1 in 1:2 loop (38) [----] [SCAL] (1) tank1.zetas_out[$i1] = 1.0 + (if tank1.aboveLevel[$i1] then 0.0 else tank1.zetaLarge) ($RES_SIM_65) (38) [----] end for; (39) [SCAL] (1) pipe2.port_a.h_outflow = tank1.ports[2].h_outflow + system.g * pipe2.height_ab ($RES_SIM_29) (40) [FOR-] (2) ($RES_SIM_66) (40) [----] for $i1 in 1:2 loop (40) [----] [SCAL] (1) tank1.ports[$i1].p = system.g * tank1.levelAbovePort[$i1] * 995.586 + tank1.p_ambient + smooth(2, if $SEV_12[$i1] then (0.008105694691387022 * tank1.ports[$i1].m_flow ^ 2.0) / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]) else if $SEV_13[$i1] then -(0.8105694691387022 * tank1.zetas_out[$i1] * tank1.ports[$i1].m_flow ^ 2.0) / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]) else if $SEV_14[$i1] then Modelica.Fluid.Utilities.regSquare2.regSquare2_utility(tank1.ports[$i1].m_flow, tank1.m_flow_small, 0.008105694691387022 / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]), (0.8105694691387022 * tank1.zetas_out[$i1]) / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]), false, 1.0) else -Modelica.Fluid.Utilities.regSquare2.regSquare2_utility(-tank1.ports[$i1].m_flow, tank1.m_flow_small, (0.8105694691387022 * tank1.zetas_out[$i1]) / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]), 0.008105694691387022 / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]), false, 1.0)) ($RES_SIM_67) (40) [----] end for; (41) [SCAL] (1) $TEV_0 = $PRE.tank1.aboveLevel[$i1] ($RES_EVT_184) (42) [FOR-] (2) ($RES_EVT_185) (42) [----] for $i1 in 1:2 loop (42) [----] [SCAL] (1) $SEV_0[$i1] = tank1.level_start >= tank1.portsData_height2[$i1] ($RES_EVT_186) (42) [----] end for; (43) [FOR-] (2) ($RES_BND_160) (43) [----] for $i1 in 1:2 loop (43) [----] [SCAL] (1) pipe2.flowModel.mus[$i1] = 0.001 ($RES_BND_161) (43) [----] end for; (44) [SCAL] (1) pipe2.port_b.h_outflow = ambient_fixed1.ports[1].h_outflow - system.g * pipe2.height_ab ($RES_SIM_30) (45) [ARRY] (1) pipe2.flowModel.pathLengths_internal = pipe2.flowModel.pathLengths ($RES_BND_162) (46) [SCAL] (1) -pipe2.port_b.m_flow = pipe2.flowModel.m_flows[1] ($RES_SIM_32) (47) [SCAL] (1) pipe2.flowModel.Res_turbulent_internal[1] = pipe2.flowModel.Re_turbulent ($RES_BND_163) (48) [ARRY] (1) {0.0} = pipe2.flowModel.Ib_flows - (pipe2.flowModel.Fs_fg + pipe2.flowModel.Fs_p) ($RES_SIM_33) (49) [ARRY] (1) pipe2.flowModel.diameters = 0.5 * (pipe2.flowModel.dimensions[2:2] + pipe2.flowModel.dimensions[1:1]) ($RES_BND_164) (50) [ARRY] (1) pipe2.flowModel.Is = {pipe2.flowModel.m_flows[1] * pipe2.flowModel.pathLengths[1]} ($RES_SIM_34) (51) [SCAL] (1) tank1.port_b_H_flow_bottom[2] = smooth(0, tank1.ports[2].m_flow * (if $SEV_15 then pipe2.port_b.h_outflow else tank1.ports[2].h_outflow)) ($RES_SIM_70) (52) [ARRY] (1) pipe2.flowModel.dps_fg = {(2.0 * (pipe2.flowModel.Fs_fg[1] / pipe2.flowModel.nParallel)) / (pipe2.flowModel.crossAreas[1] + pipe2.flowModel.crossAreas[2])} ($RES_SIM_35) (53) [SCAL] (1) tank1.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_118) (54) [SCAL] (1) tank1.port_b_H_flow_bottom[1] = smooth(0, tank1.ports[1].m_flow * (if $SEV_16 then pipe1.port_b.h_outflow else tank1.ports[1].h_outflow)) ($RES_SIM_71) (55) [ARRY] (1) pipe2.flowModel.Fs_p = pipe2.flowModel.nParallel * {0.5 * (pipe2.flowModel.crossAreas[1] + pipe2.flowModel.crossAreas[2]) * (pipe2.flowModel.states.T - pipe2.flowModel.states.T)} ($RES_SIM_36) (56) [SCAL] (1) pipe2.port_b.m_flow + tank1.ports[2].m_flow = 0.0 ($RES_SIM_119) (57) [ARRY] (1) pipe2.flowModel.Ib_flows = {0.0} ($RES_SIM_37) (58) [SCAL] (1) tank1.Qb_flow = tank1.heatTransfer.Q_flows[1] ($RES_SIM_73) (59) [SCAL] (1) pipe2.flowModel.rhos_act[1] = noEvent(if $SEV_5 then pipe2.flowModel.rhos[1] else pipe2.flowModel.rhos[2]) ($RES_SIM_38) (60) [ARRY] (2) tank1.heatTransfer.states = {tank1.medium.state} ($RES_BND_168) (61) [SCAL] (1) tank1.Hb_flow = $FUN_3 ($RES_SIM_74) (62) [SCAL] (1) pipe2.flowModel.mus_act[1] = noEvent(if $SEV_5 then pipe2.flowModel.mus[1] else pipe2.flowModel.mus[2]) ($RES_SIM_39) (63) [ARRY] (4) pipe1.flowModel.states = {Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.Medium.ThermodynamicState(pipe1.port_a.p, 273.15 + 2.390057361376673e-4 * ambient_fixed.ports[1].h_outflow), Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe1.Medium.ThermodynamicState(pipe1.port_b.p, 273.15 + 2.390057361376673e-4 * tank1.ports[1].h_outflow)} ($RES_BND_169) (64) [SCAL] (1) tank1.mb_flow = $FUN_2 ($RES_SIM_75) (65) [SCAL] (1) tank1.fluidVolume = tank1.crossArea * tank1.level + tank1.V0 ($RES_SIM_76) (66) [FOR-] (2) ($RES_SIM_78) (66) [----] for $i1 in 1:2 loop (66) [----] [SCAL] (1) tank1.bottomArea[$i1] = 3.141592653589793 * (tank1.portsData_diameter2[$i1] / 2.0) ^ 2.0 ($RES_SIM_79) (66) [----] end for; (67) [SCAL] (1) $SEV_5 = pipe2.flowModel.m_flows[1] > 0.0 ($RES_EVT_191) (68) [SCAL] (1) $SEV_7 = pipe1.flowModel.m_flows[1] > 0.0 ($RES_EVT_193) (69) [FOR-] (2) ($RES_EVT_194) (69) [----] for $i1 in 1:2 loop (69) [----] [SCAL] (1) $SEV_8[$i1] = tank1.level >= (tank1.portsData_height2[$i1] + tank1.ports_emptyPipeHysteresis[$i1]) ($RES_EVT_195) (69) [----] end for; (70) [FOR-] (2) ($RES_EVT_196) (70) [----] for $i1 in 1:2 loop (70) [----] [SCAL] (1) $SEV_9[$i1] = tank1.level >= (tank1.portsData_height2[$i1] - tank1.ports_emptyPipeHysteresis[$i1]) ($RES_EVT_197) (70) [----] end for; (71) [FOR-] (2) ($RES_EVT_198) (71) [----] for $i1 in 1:2 loop (71) [----] [SCAL] (1) $SEV_10[$i1] = $TEV_0 and $SEV_9[$i1] ($RES_EVT_199) (71) [----] end for; (72) [SCAL] (1) pipe1.port_b.m_flow + tank1.ports[1].m_flow = 0.0 ($RES_SIM_120) (73) [SCAL] (1) ambient_fixed1.ports[1].m_flow - pipe2.port_b.m_flow = 0.0 ($RES_SIM_121) (74) [ARRY] (1) tank1.heatTransfer.surfaceAreas = {2.0 * $FUN_10 * tank1.level + tank1.crossArea} ($RES_BND_134) (75) [ARRY] (1) pipe2.flowModel.m_flows = {homotopy(({$FUN_5} .* pipe2.flowModel.nParallel)[1], (pipe2.flowModel.m_flow_nominal / pipe2.flowModel.dp_nominal * (pipe2.flowModel.dps_fg - (pipe2.flowModel.g * pipe2.flowModel.dheights) .* pipe2.flowModel.rho_nominal))[1])} ($RES_SIM_40) (76) [SCAL] (1) ambient_fixed1.ports[1].p = pipe2.port_a.p ($RES_SIM_122) (77) [ARRY] (1) tank1.heatTransfer.Ts = {tank1.heatTransfer.states.p} ($RES_BND_135) (78) [ARRY] (4) pipe2.flowModel.states = {Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.Medium.ThermodynamicState(pipe2.port_a.p, 273.15 + 2.390057361376673e-4 * ambient_fixed1.ports[1].h_outflow), Modelica.Fluid.Examples.AST_BatchPlant.Test.TankWithEmptyingPipe2.pipe2.Medium.ThermodynamicState(pipe2.port_b.p, 273.15 + 2.390057361376673e-4 * tank1.ports[2].h_outflow)} ($RES_BND_170) (79) [SCAL] (1) tank1.ports[2].p = pipe2.port_b.p ($RES_SIM_123) (80) [ARRY] (2) tank1.portsData_diameter = tank1.portsData.diameter ($RES_BND_136) (81) [SCAL] (1) pipe1.port_a.h_outflow = tank1.ports[1].h_outflow + system.g * pipe1.height_ab ($RES_SIM_42) (82) [SCAL] (1) ambient_fixed.ports[1].m_flow - pipe1.port_b.m_flow = 0.0 ($RES_SIM_124) (83) [ARRY] (2) tank1.portsData_height = tank1.portsData.height ($RES_BND_137) (84) [SCAL] (1) pipe1.port_b.h_outflow = ambient_fixed.ports[1].h_outflow - system.g * pipe1.height_ab ($RES_SIM_43) (85) [SCAL] (1) ambient_fixed.ports[1].p = pipe1.port_a.p ($RES_SIM_125) (86) [ARRY] (2) pipe1.flowModel.vs = {-(0.0010044335697769957 * pipe1.port_b.m_flow) / pipe1.flowModel.crossAreas[1], -(0.0010044335697769957 * pipe1.port_b.m_flow) / pipe1.flowModel.crossAreas[2]} / pipe1.nParallel ($RES_BND_138) (87) [SCAL] (1) tank1.ports[1].p = pipe1.port_b.p ($RES_SIM_126) (88) [ARRY] (2) pipe1.flowModel.crossAreas = {pipe1.crossArea, pipe1.crossArea} ($RES_BND_139) (89) [FOR-] (2) ($RES_SIM_80) (89) [----] for $i1 in 1:2 loop (89) [----] [SCAL] (1) tank1.ports_emptyPipeHysteresis[$i1] = tank1.portsData_diameter2[$i1] * tank1.hysteresisFactor ($RES_SIM_81) (89) [----] end for; (90) [SCAL] (1) -pipe1.port_b.m_flow = pipe1.flowModel.m_flows[1] ($RES_SIM_45) (91) [ARRY] (2) tank1.portsData_height = tank1.portsData_height2 ($RES_SIM_127) (92) [ARRY] (1) {0.0} = pipe1.flowModel.Ib_flows - (pipe1.flowModel.Fs_fg + pipe1.flowModel.Fs_p) ($RES_SIM_46) (93) [ARRY] (2) tank1.portsData_diameter = tank1.portsData_diameter2 ($RES_SIM_128) (94) [ARRY] (1) pipe1.flowModel.Is = {pipe1.flowModel.m_flows[1] * pipe1.flowModel.pathLengths[1]} ($RES_SIM_47) (95) [ARRY] (1) pipe1.flowModel.dps_fg = {(2.0 * (pipe1.flowModel.Fs_fg[1] / pipe1.flowModel.nParallel)) / (pipe1.flowModel.crossAreas[1] + pipe1.flowModel.crossAreas[2])} ($RES_SIM_48) (96) [ARRY] (1) tank1.heatTransfer.Q_flows = tank1.heatTransfer.heatPorts.Q_flow ($RES_SIM_84) (97) [ARRY] (1) pipe1.flowModel.Fs_p = pipe1.flowModel.nParallel * {0.5 * (pipe1.flowModel.crossAreas[1] + pipe1.flowModel.crossAreas[2]) * (pipe1.flowModel.states.T - pipe1.flowModel.states.T)} ($RES_SIM_49) (98) [ARRY] (1) tank1.heatTransfer.Ts = tank1.heatTransfer.heatPorts.T ($RES_SIM_85) (99) [FOR-] (2) ($RES_EVT_200) (99) [----] for $i1 in 1:2 loop (99) [----] [SCAL] (1) $SEV_11[$i1] = $SEV_8[$i1] or $SEV_10[$i1] ($RES_EVT_201) (99) [----] end for; (100) [FOR-] (2) ($RES_EVT_202) (100) [----] for $i1 in 1:2 loop (100) [----] [SCAL] (1) $SEV_12[$i1] = tank1.ports[$i1].m_flow >= tank1.m_flow_small ($RES_EVT_203) (100) [----] end for; (101) [SCAL] (1) ambient_fixed1.ports[1].h_outflow = 4184.0 * ((-273.15) + ambient_fixed1.T) ($RES_SIM_9) (102) [FOR-] (2) ($RES_EVT_204) (102) [----] for $i1 in 1:2 loop (102) [----] [SCAL] (1) $SEV_13[$i1] = tank1.ports[$i1].m_flow <= (-tank1.m_flow_small) ($RES_EVT_205) (102) [----] end for; (103) [SCAL] (1) ambient_fixed1.ports[1].p = ambient_fixed1.p ($RES_SIM_8) (104) [FOR-] (2) ($RES_EVT_206) (104) [----] for $i1 in 1:2 loop (104) [----] [SCAL] (1) $SEV_14[$i1] = 0.008105694691387022 / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]) >= (0.8105694691387022 * tank1.zetas_out[$i1]) / (995.586 * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1] * tank1.portsData_diameter2[$i1]) ($RES_EVT_207) (104) [----] end for; (105) [SCAL] (1) $SEV_15 = tank1.ports[2].m_flow > 0.0 ($RES_EVT_208) (106) [SCAL] (1) $SEV_16 = tank1.ports[1].m_flow > 0.0 ($RES_EVT_209) (107) [ARRY] (2) pipe1.flowModel.dimensions = {(4.0 * pipe1.crossArea) / pipe1.perimeter, (4.0 * pipe1.crossArea) / pipe1.perimeter} ($RES_BND_140) (108) [ARRY] (2) pipe1.flowModel.roughnesses = {pipe1.roughness, pipe1.roughness} ($RES_BND_141) (109) [ARRY] (1) pipe1.flowModel.dheights = {pipe1.height_ab} ($RES_BND_142) (110) [ARRY] (1) pipe1.flowModel.pathLengths = {pipe1.length} ($RES_BND_143) (111) [FOR-] (2) ($RES_BND_144) (111) [----] for $i1 in 1:2 loop (111) [----] [SCAL] (1) pipe1.flowModel.rhos[$i1] = 995.586 ($RES_BND_145) (111) [----] end for;