Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr Modelica_3.2.1_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RLV.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RLV,tolerance=1e-06,outputFormat="empty",numberOfIntervals=1000,variableFilter="",fileNamePrefix="Modelica_3.2.1_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RLV") translateModel(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RLV,tolerance=1e-06,outputFormat="empty",numberOfIntervals=1000,variableFilter="",fileNamePrefix="Modelica_3.2.1_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RLV") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.0009761/0.0009761, allocations: 107.1 kB / 16.42 MB, free: 6.031 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.0009313/0.0009314, allocations: 186.6 kB / 17.35 MB, free: 5.602 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.235/1.235, allocations: 205.1 MB / 223.2 MB, free: 12.23 MB / 190.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.729e-05/2.73e-05, allocations: 3.125 kB / 327.2 MB, free: 3.277 MB / 270.1 MB Notification: Performance of NFInst.instantiate(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTap2mPulse.ThyristorCenterTap2mPulse_RLV): time 0.006859/0.006895, allocations: 5.958 MB / 333.2 MB, free: 13.29 MB / 286.1 MB Notification: Performance of NFInst.instExpressions: time 0.003175/0.01008, allocations: 1.832 MB / 335 MB, free: 11.45 MB / 286.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0003655/0.01046, allocations: 31.81 kB / 335.1 MB, free: 11.42 MB / 286.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0004877/0.01095, allocations: 249.9 kB / 335.3 MB, free: 11.18 MB / 286.1 MB Notification: Performance of NFTyping.typeBindings: time 0.0008838/0.01185, allocations: 445.3 kB / 335.7 MB, free: 10.74 MB / 286.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.0005414/0.0124, allocations: 363.5 kB / 336.1 MB, free: 10.38 MB / 286.1 MB Notification: Performance of NFFlatten.flatten: time 0.002184/0.01459, allocations: 2.452 MB / 338.5 MB, free: 7.922 MB / 286.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0009843/0.01559, allocations: 0.9402 MB / 339.5 MB, free: 6.953 MB / 286.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.0007138/0.01631, allocations: 0.7829 MB / 340.3 MB, free: 6.168 MB / 286.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0008249/0.01715, allocations: 0.8214 MB / 341.1 MB, free: 5.344 MB / 286.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0001886/0.01734, allocations: 144 kB / 341.2 MB, free: 5.203 MB / 286.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.0001953/0.01755, allocations: 148 kB / 341.4 MB, free: 5.059 MB / 286.1 MB Notification: Performance of combineBinaries: time 0.001463/0.01901, allocations: 2.012 MB / 343.4 MB, free: 3.027 MB / 286.1 MB Notification: Performance of replaceArrayConstructors: time 0.0008103/0.01983, allocations: 1.316 MB / 344.7 MB, free: 1.695 MB / 286.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0002025/0.02004, allocations: 195.4 kB / 344.9 MB, free: 1.504 MB / 286.1 MB Notification: Performance of FrontEnd: time 0.0001163/0.02016, allocations: 43.81 kB / 344.9 MB, free: 1.461 MB / 286.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 447 (225) * Number of variables: 447 (196) Notification: Performance of Bindings: time 0.005552/0.02572, allocations: 6.474 MB / 351.4 MB, free: 10.81 MB / 302.1 MB Notification: Performance of FunctionAlias: time 0.0003835/0.02611, allocations: 359.3 kB / 351.8 MB, free: 10.46 MB / 302.1 MB Notification: Performance of Early Inline: time 0.002785/0.02891, allocations: 3.131 MB / 354.9 MB, free: 7.285 MB / 302.1 MB Notification: Performance of simplify1: time 0.0001732/0.02909, allocations: 159.8 kB / 355 MB, free: 7.129 MB / 302.1 MB Notification: Performance of Alias: time 0.00323/0.03233, allocations: 3.315 MB / 358.4 MB, free: 3.562 MB / 302.1 MB Notification: Performance of simplify2: time 0.0001336/0.03247, allocations: 123.8 kB / 358.5 MB, free: 3.441 MB / 302.1 MB Notification: Performance of Events: time 0.0007142/0.03319, allocations: 0.6971 MB / 359.2 MB, free: 2.742 MB / 302.1 MB Notification: Performance of Detect States: time 0.001153/0.03436, allocations: 1.032 MB / 360.2 MB, free: 1.688 MB / 302.1 MB Notification: Performance of Partitioning: time 0.001367/0.03573, allocations: 1.387 MB / 361.6 MB, free: 208 kB / 302.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency pulse2m.twomPulse.gain.y could not be divided by the body size 3 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (3) pulse2m.twomPulse.replicator.y = {pulse2m.twomPulse.gain.y for $i1 in 1:3} ($RES_SIM_52) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (172/451) **************************** (1) [DISC] (3) Boolean[3] $SEV_6[$i1] (2) [ALGB] (1) Real rootMeanSquareVoltage.product.y (3) [ALGB] (3) flow Real[3] rectifier.thyristor_n.idealThyristor.p.i (4) [ALGB] (3) Real[3] rectifier.ac_p.pin.v (5) [ALGB] (2) Real[2] rootMeanSquareVoltage.product.u (6) [DISC] (3) final Boolean[3] rectifier.thyristor_p.idealThyristor.off (fixed = {true for $i1 in 1:3}, start = {rectifier.offStart_p[$idealThyristor1] for $idealThyristor1 in 1:3}) (7) [ALGB] (1) Real resistor.v (8) [DISC] (3) Boolean[3] $SEV_1[$i1] (9) [DISC] (1) Boolean $TEV_9 (10) [ALGB] (1) Real resistor.LossPower (11) [DISC] (1) Boolean $TEV_8 (12) [ALGB] (3) Real[3] rectifier.thyristor_n.idealThyristor.p.v (13) [DISC] (1) Boolean $TEV_1 (14) [ALGB] (3) flow Real[3] rectifier.ac_p.pin.i (15) [DISC] (1) Boolean $TEV_0 (16) [ALGB] (3) flow Real[3] rectifier.thyristor_p.idealThyristor.p.i (17) [ALGB] (3) flow Real[3] pulse2m.delta.plug_p.pin.i (18) [ALGB] (3) flow Real[3] sineVoltage_p.plug_n.pin.i (19) [ALGB] (1) Real pulse2m.twomPulse.limiter.y (20) [ALGB] (3) flow Real[3] sineVoltage_n.plug_n.pin.i (21) [ALGB] (1) Real rectifier.vDC = rectifier.vDC (22) [ALGB] (3) Real[3] pulse2m.twomPulse.replicator.y (23) [ALGB] (1) Real rectifier.powerTotalAC = sum(rectifier.powerAC) (24) [ALGB] (3) Real[3] pulse2m.twomPulse.positiveThreshold.u (25) [ALGB] (3) Real[3] rectifier.thyristor_p.idealThyristor.p.v (26) [ALGB] (3) Real[3] pulse2m.delta.plug_p.pin.v (27) [DISS] (3) protected discrete Real[3] pulse2m.twomPulse.timerNegative.entryTime (28) [DISC] (3) Boolean[3] pulse2m.twomPulse.positiveThreshold.y (29) [ALGB] (3) Real[3] sineVoltage_p.plug_n.pin.v (30) [ALGB] (3) Real[3] sineVoltage_n.plug_n.pin.v (31) [ALGB] (3) flow Real[3] pulse2m.voltageSensor.potentialSensor.p.i (32) [DISC] (3) Boolean[3] $SEV_14[$i1] (33) [ALGB] (3) Real[3] rectifier.thyristor_n.v (34) [ALGB] (3) Real[3] pulse2m.twomPulse.negativeThreshold.u (35) [DISC] (3) Boolean[3] rectifier.enableLogic.booleanReplicator.y (36) [ALGB] (3) flow Real[3] pulse2m.ac.pin.i (37) [DISC] (3) Boolean[3] pulse2m.twomPulse.negativeThreshold.y (38) [ALGB] (1) Real rectifier.iDC = rectifier.iDC (39) [ALGB] (3) flow Real[3] sineVoltage_p.sineVoltage.n.i (40) [ALGB] (3) Real[3] pulse2m.twomPulse.greaterPositive.u1 (41) [ALGB] (3) Real[3] pulse2m.twomPulse.greaterPositive.u2 (42) [DISC] (3) Boolean[3] $SEV_5[$i1] (43) [DISC] (3) Boolean[3] pulse2m.twomPulse.negativeEqual.y (44) [ALGB] (3) Real[3] pulse2m.voltageSensor.potentialSensor.p.v (45) [ALGB] (3) Real[3] rectifier.thyristor_n.i (46) [DISC] (3) Boolean[3] rectifier.enableLogic.internalEnable (47) [ALGB] (3) Real[3] pulse2m.ac.pin.v (48) [ALGB] (3) Real[3] rectifier.thyristor_p.plug_p.pin.v (49) [ALGB] (3) Real[3] rectifier.thyristor_n.plug_p.pin.v (50) [ALGB] (3) Real[3] pulse2m.twomPulse.v (51) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.n.v (52) [DISC] (3) Boolean[3] pulse2m.twomPulse.greaterPositive.y (53) [ALGB] (3) flow Real[3] rectifier.star_p.plug_p.pin.i (54) [ALGB] (3) flow Real[3] rectifier.star_n.plug_p.pin.i (55) [DER-] (1) Real $DER.meanVoltage.x (56) [ALGB] (1) flow Real rectifier.star_p.pin_n.i (57) [ALGB] (1) Real rectifier.LossPower (58) [ALGB] (1) Real resistor.n.v (59) [ALGB] (3) flow Real[3] rectifier.thyristor_p.plug_p.pin.i (60) [ALGB] (3) flow Real[3] rectifier.thyristor_n.plug_p.pin.i (61) [DISC] (3) Boolean[3] rectifier.andCondition_n.y (62) [ALGB] (3) Real[3] sineVoltage_n.i (63) [DISC] (3) Boolean[3] rectifier.andCondition_n.u2 (64) [DISC] (3) Boolean[3] rectifier.andCondition_n.u1 (65) [ALGB] (3) Real[3] rectifier.star_n.plug_p.pin.v (66) [ALGB] (3) Real[3] rectifier.star_p.plug_p.pin.v (67) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.p.v (68) [ALGB] (3) Real[3] $FUN_9 (69) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.signalSource.y (70) [ALGB] (1) Real $FUN_6 (71) [ALGB] (1) Real $FUN_5 (72) [DISC] (3) Boolean[3] pulse2m.twomPulse.fire_p (73) [ALGB] (3) final Real[3] rectifier.thyristor_n.idealThyristor.LossPower (74) [ALGB] (1) flow Real ground.p.i (75) [DISC] (3) Boolean[3] pulse2m.twomPulse.fire_n (76) [ALGB] (3) Real[3] $FUN_2 (77) [ALGB] (3) Real[3] sineVoltage_n.v (78) [DISC] (3) Boolean[3] rectifier.thyristor_n.idealThyristor.fire (79) [DER-] (1) Real $DER.meanCurrent.x (80) [DISC] (3) Boolean[3] rectifier.thyristor_n.fire (81) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.i (82) [ALGB] (3) flow Real[3] sineVoltage_n.sineVoltage.p.i (83) [DISC] (3) Boolean[3] $SEV_13[$i1] (84) [ALGB] (3) final Real[3] rectifier.thyristor_n.idealThyristor.i (85) [DISC] (3) Boolean[3] $SEV_9[$i1] (86) [DISC] (3) Boolean[3] pulse2m.twomPulse.timerPositive.u (87) [ALGB] (3) Real[3] pulse2m.twomPulse.timerPositive.y (88) [DISC] (3) Boolean[3] rectifier.fire_n (89) [ALGB] (3) Real[3] rectifier.ac_n.pin.v (90) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.v (91) [ALGB] (3) protected final Real[3] rectifier.thyristor_n.idealThyristor.s (start = {0.0 for $i1 in 1:3}) (92) [DISC] (3) Boolean[3] rectifier.fire_p (93) [ALGB] (3) final Real[3] rectifier.thyristor_n.idealThyristor.v (94) [ALGB] (3) Real[3] rectifier.powerAC = rectifier.vAC * rectifier.iAC (95) [ALGB] (3) flow Real[3] rectifier.ac_n.pin.i (96) [ALGB] (3) flow Real[3] sineVoltage_n.plug_p.pin.i (97) [ALGB] (3) flow Real[3] sineVoltage_p.plug_p.pin.i (98) [ALGB] (3) Real[3] rectifier.vAC = rectifier.ac_p.pin[:].v - rectifier.ac_n.pin[:].v (99) [ALGB] (1) Real meanVoltage.u (100) [ALGB] (3) Real[3] sineVoltage_p.plug_p.pin.v (101) [ALGB] (3) flow Real[3] rectifier.thyristor_n.idealThyristor.n.i (102) [ALGB] (3) Real[3] pulse2m.gain.y (103) [ALGB] (1) flow Real rectifier.star_n.pin_n.i (104) [ALGB] (3) Real[3] sineVoltage_n.plug_p.pin.v (105) [DISC] (3) Boolean[3] $SEV_17[$i1] (106) [DISC] (1) Boolean $SEV_3 (107) [DISC] (1) Boolean $SEV_2 (108) [ALGB] (3) Real[3] pulse2m.gain.u (109) [DISC] (3) Boolean[3] $SEV_12[$i1] (110) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.v (111) [ALGB] (3) Real[3] rectifier.iAC = rectifier.ac_p.pin[:].i (112) [ALGB] (3) Real[3] rectifier.thyristor_n.idealThyristor.n.v (113) [ALGB] (3) Real[3] pulse2m.voltageSensor.phi (114) [DISC] (3) Boolean[3] $SEV_8[$i1] (115) [ALGB] (1) Real inductor.v (116) [DISC] (3) Boolean[3] rectifier.thyristor_n.off = rectifier.thyristor_n.idealThyristor.off (117) [ALGB] (3) flow Real[3] rectifier.thyristor_p.idealThyristor.n.i (118) [ALGB] (3) Real[3] pulse2m.voltageSensor.potentialSensor.phi (119) [ALGB] (1) flow Real star.pin_n.i (120) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.i (121) [ALGB] (1) Real inductor.n.v (122) [ALGB] (3) Real[3] rectifier.thyristor_p.plug_n.pin.v (123) [ALGB] (3) Real[3] rectifier.thyristor_n.plug_n.pin.v (124) [DISC] (3) Boolean[3] rectifier.andCondition_p.u2 (125) [DISC] (3) Boolean[3] rectifier.thyristor_p.off = rectifier.thyristor_p.idealThyristor.off (126) [DISC] (3) Boolean[3] rectifier.andCondition_p.u1 (127) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.signalSource.y (128) [ALGB] (1) Real resistor.R_actual (129) [ALGB] (3) Real[3] rectifier.thyristor_p.idealThyristor.n.v (130) [ALGB] (3) flow Real[3] sineVoltage_p.sineVoltage.p.i (131) [DER-] (1) Real $DER.rootMeanSquareVoltage.mean.x (132) [DISC] (3) Boolean[3] rectifier.thyristor_p.idealThyristor.fire (133) [ALGB] (3) flow Real[3] rectifier.thyristor_p.plug_n.pin.i (134) [ALGB] (3) flow Real[3] rectifier.thyristor_n.plug_n.pin.i (135) [ALGB] (3) Real[3] rectifier.thyristor_p.v (136) [ALGB] (3) flow Real[3] pulse2m.delta.plug_n.pin.i (137) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.p.v (138) [DISS] (3) protected discrete Real[3] pulse2m.twomPulse.timerPositive.entryTime (139) [ALGB] (3) Real[3] rectifier.thyristor_p.i (140) [DISC] (3) Boolean[3] $SEV_16[$i1] (141) [ALGB] (3) Real[3] pulse2m.delta.plug_n.pin.v (142) [ALGB] (3) Real[3] pulse2m.twomPulse.realPassThrough.y (143) [DISC] (3) Boolean[3] rectifier.thyristor_p.fire (144) [ALGB] (3) Real[3] pulse2m.twomPulse.realPassThrough.u (145) [ALGB] (3) Real[3] sineVoltage_p.i (146) [DISC] (3) Boolean[3] $SEV_11[$i1] (147) [ALGB] (3) final Real[3] rectifier.thyristor_p.idealThyristor.LossPower (148) [ALGB] (3) Real[3] sineVoltage_n.sineVoltage.n.v (149) [DISC] (3) Boolean[3] $SEV_7[$i1] (150) [ALGB] (1) flow Real currentSensor.n.i (151) [DISC] (3) Boolean[3] rectifier.andCondition_p.y (152) [ALGB] (3) Real[3] sineVoltage_p.v (153) [ALGB] (3) Real[3] pulse2m.twomPulse.negativeEqual.u1 (154) [ALGB] (3) Real[3] pulse2m.twomPulse.negativeEqual.u2 (155) [ALGB] (3) flow Real[3] sineVoltage_n.sineVoltage.n.i (156) [DISC] (3) Boolean[3] pulse2m.twomPulse.timerNegative.u (157) [ALGB] (1) Real rectifier.powerDC = rectifier.vDC * rectifier.iDC (158) [ALGB] (3) Real[3] pulse2m.twomPulse.timerNegative.y (159) [ALGB] (3) Real[3] pulse2m.voltageSensor.plug_p.pin.v (160) [ALGB] (3) flow Real[3] star.plug_p.pin.i (161) [DISC] (3) Boolean[3] pulse2m.fire_p (162) [DISC] (3) Boolean[3] pulse2m.fire_n (163) [DER-] (1) Real $DER.inductor.i (164) [ALGB] (3) final Real[3] rectifier.thyristor_p.idealThyristor.i (165) [ALGB] (3) flow Real[3] pulse2m.voltageSensor.plug_p.pin.i (166) [ALGB] (3) Real[3] star.plug_p.pin.v (167) [ALGB] (3) protected final Real[3] rectifier.thyristor_p.idealThyristor.s (start = {0.0 for $i1 in 1:3}) (168) [DISC] (3) final Boolean[3] rectifier.thyristor_n.idealThyristor.off (fixed = {true for $i1 in 1:3}, start = {rectifier.offStart_n[$idealThyristor1] for $idealThyristor1 in 1:3}) (169) [DISC] (3) Boolean[3] $SEV_15[$i1] (170) [ALGB] (3) final Real[3] rectifier.thyristor_p.idealThyristor.v (171) [ALGB] (1) Real pulse2m.twomPulse.gain.y (172) [DISC] (3) Boolean[3] $SEV_10[$i1] System Equations (201/451) **************************** (1) [FOR-] (3) ($RES_SIM_204) (1) [----] for $i1 in 1:3 loop (1) [----] [SCAL] (1) pulse2m.delta.plug_n.pin[$i1].i - pulse2m.ac.pin[$i1].i = 0.0 ($RES_SIM_205) (1) [----] end for; (2) [FOR-] (3) ($RES_SIM_120) (2) [----] for $i1 in 1:3 loop (2) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].v = rectifier.thyristor_p.idealThyristor[$i1].p.v - rectifier.thyristor_p.idealThyristor[$i1].n.v ($RES_SIM_121) (2) [----] end for; (3) [SCAL] (1) $DER.rootMeanSquareVoltage.mean.x = rootMeanSquareVoltage.product.y ($RES_SIM_80) (4) [ARRY] (3) pulse2m.ac.pin.v = pulse2m.delta.plug_n.pin.v ($RES_SIM_206) (5) [FOR-] (3) ($RES_SIM_207) (5) [----] for $i1 in 1:3 loop (5) [----] [SCAL] (1) pulse2m.voltageSensor.plug_p.pin[$i1].i + pulse2m.delta.plug_p.pin[$i1].i = 0.0 ($RES_SIM_208) (5) [----] end for; (6) [ARRY] (3) rectifier.thyristor_p.idealThyristor.n.v = rectifier.thyristor_p.plug_n.pin.v ($RES_SIM_281) (7) [FOR-] (3) ($RES_SIM_282) (7) [----] for $i1 in 1:3 loop (7) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].p.i - rectifier.thyristor_p.plug_p.pin[$i1].i = 0.0 ($RES_SIM_283) (7) [----] end for; (8) [ARRY] (3) pulse2m.voltageSensor.plug_p.pin.v = pulse2m.delta.plug_p.pin.v ($RES_SIM_209) (9) [FOR-] (3) ($RES_SIM_124) (9) [----] for $i1 in 1:3 loop (9) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].LossPower = rectifier.thyristor_p.idealThyristor[$i1].v * rectifier.thyristor_p.idealThyristor[$i1].i ($RES_SIM_125) (9) [----] end for; (10) [SCAL] (1) $DER.meanVoltage.x = meanVoltage.u ($RES_SIM_84) (11) [SCAL] (1) meanVoltage.u = rectifier.vDC ($RES_SIM_85) (12) [ARRY] (3) rectifier.thyristor_p.plug_p.pin.v = rectifier.thyristor_p.idealThyristor.p.v ($RES_SIM_284) (13) [FOR-] (3) ($RES_SIM_126) (13) [----] for $i1 in 1:3 loop (13) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].i = rectifier.thyristor_p.idealThyristor[$i1].s * (if rectifier.thyristor_p.idealThyristor[$i1].off then rectifier.thyristor_p.idealThyristor[$i1].Goff else 1.0) + rectifier.thyristor_p.idealThyristor[$i1].Goff * rectifier.thyristor_p.idealThyristor[$i1].Vknee ($RES_SIM_127) (13) [----] end for; (14) [ARRY] (3) rectifier.enableLogic.internalEnable = rectifier.enableLogic.booleanReplicator.y ($RES_SIM_286) (15) [FOR-] (3) ($RES_SIM_128) (15) [----] for $i1 in 1:3 loop (15) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].v = rectifier.thyristor_p.idealThyristor[$i1].s * (if rectifier.thyristor_p.idealThyristor[$i1].off then 1.0 else rectifier.thyristor_p.idealThyristor[$i1].Ron) + rectifier.thyristor_p.idealThyristor[$i1].Vknee ($RES_SIM_129) (15) [----] end for; (16) [FOR-] (3) ($RES_SIM_287) (16) [----] for $i1 in 1:3 loop (16) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].n.i - sineVoltage_p.plug_n.pin[$i1].i = 0.0 ($RES_SIM_288) (16) [----] end for; (17) [SCAL] (1) rectifier.LossPower = $FUN_5 + $FUN_6 ($RES_SIM_89) (18) [ARRY] (3) sineVoltage_p.sineVoltage.n.v = sineVoltage_p.plug_n.pin.v ($RES_SIM_289) (19) [ARRY] (3) pulse2m.voltageSensor.potentialSensor.phi = pulse2m.voltageSensor.phi ($RES_SIM_210) (20) [FOR-] (3) ($RES_SIM_211) (20) [----] for $i1 in 1:3 loop (20) [----] [SCAL] (1) pulse2m.voltageSensor.potentialSensor[$i1].p.i - pulse2m.voltageSensor.plug_p.pin[$i1].i = 0.0 ($RES_SIM_212) (20) [----] end for; (21) [ARRY] (3) pulse2m.voltageSensor.potentialSensor.p.v = pulse2m.voltageSensor.plug_p.pin.v ($RES_SIM_213) (22) [SCAL] (1) constantVoltage.V = inductor.n.v ($RES_SIM_15) (23) [SCAL] (1) -(pulse2m.delta.plug_n.pin[3].i + pulse2m.delta.plug_p.pin[1].i) = 0.0 ($RES_SIM_214) (24) [FOR-] (3) ($RES_SIM_130) (24) [----] for $i1 in 1:3 loop (24) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].off = $SEV_14[$i1] ($RES_SIM_131) (24) [----] end for; (25) [SCAL] (1) pulse2m.delta.plug_n.pin[3].v = pulse2m.delta.plug_p.pin[1].v ($RES_SIM_215) (26) [SCAL] (1) -(pulse2m.delta.plug_n.pin[2].i + pulse2m.delta.plug_p.pin[3].i) = 0.0 ($RES_SIM_216) (27) [FOR-] (3) ($RES_SIM_91) (27) [----] for $i1 in 1:3 loop (27) [----] [SCAL] (1) rectifier.star_n.plug_p.pin[$i1].v = rectifier.vDC ($RES_SIM_92) (27) [----] end for; (28) [FOR-] (3) ($RES_SIM_290) (28) [----] for $i1 in 1:3 loop (28) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].p.i - sineVoltage_p.plug_p.pin[$i1].i = 0.0 ($RES_SIM_291) (28) [----] end for; (29) [SCAL] (1) pulse2m.delta.plug_n.pin[2].v = pulse2m.delta.plug_p.pin[3].v ($RES_SIM_217) (30) [FOR-] (3) ($RES_SIM_132) (30) [----] for $i1 in 1:3 loop (30) [----] [SCAL] (1) rectifier.andCondition_n[$i1].y = $SEV_15[$i1] ($RES_SIM_133) (30) [----] end for; (31) [SCAL] (1) inductor.v = resistor.n.v - inductor.n.v ($RES_SIM_19) (32) [SCAL] (1) -(pulse2m.delta.plug_n.pin[1].i + pulse2m.delta.plug_p.pin[2].i) = 0.0 ($RES_SIM_218) (33) [ARRY] (3) sineVoltage_p.sineVoltage.p.v = sineVoltage_p.plug_p.pin.v ($RES_SIM_292) (34) [SCAL] (1) pulse2m.delta.plug_n.pin[1].v = pulse2m.delta.plug_p.pin[2].v ($RES_SIM_219) (35) [ARRY] (3) rectifier.enableLogic.booleanReplicator.y = {rectifier.enableLogic.enableConstantSource.k for $i1 in 1:3} ($RES_SIM_134) (36) [FOR-] (3) ($RES_SIM_94) (36) [----] for $i1 in 1:3 loop (36) [----] [SCAL] (1) rectifier.star_p.plug_p.pin[$i1].v = rectifier.vDC ($RES_SIM_95) (36) [----] end for; (37) [FOR-] (3) ($RES_SIM_136) (37) [----] for $i1 in 1:3 loop (37) [----] [SCAL] (1) rectifier.andCondition_p[$i1].y = $SEV_16[$i1] ($RES_SIM_137) (37) [----] end for; (38) [ARRY] (3) rectifier.thyristor_n.i = rectifier.thyristor_n.plug_p.pin.i ($RES_SIM_96) (39) [ARRY] (3) rectifier.thyristor_n.v = rectifier.thyristor_n.plug_p.pin.v - rectifier.thyristor_n.plug_n.pin.v ($RES_SIM_97) (40) [FOR-] (3) ($RES_SIM_98) (40) [----] for $i1 in 1:3 loop (40) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].i = rectifier.thyristor_n.idealThyristor[$i1].p.i ($RES_SIM_99) (40) [----] end for; (41) [ARRY] (3) sineVoltage_p.i = sineVoltage_p.plug_p.pin.i ($RES_SIM_138) (42) [ARRY] (3) sineVoltage_p.v = sineVoltage_p.plug_p.pin.v - sineVoltage_p.plug_n.pin.v ($RES_SIM_139) (43) [SCAL] (1) $DER.inductor.i = inductor.v ($RES_SIM_20) (44) [SCAL] (1) pulse2m.twomPulse.realPassThrough[3].y = pulse2m.twomPulse.positiveThreshold[3].u ($RES_SIM_220) (45) [SCAL] (1) pulse2m.twomPulse.realPassThrough[3].y = pulse2m.twomPulse.negativeThreshold[3].u ($RES_SIM_221) (46) [SCAL] (1) resistor.v = rectifier.vDC - resistor.n.v ($RES_SIM_23) (47) [SCAL] (1) pulse2m.twomPulse.realPassThrough[2].y = pulse2m.twomPulse.positiveThreshold[2].u ($RES_SIM_222) (48) [SCAL] (1) pulse2m.twomPulse.realPassThrough[2].y = pulse2m.twomPulse.negativeThreshold[2].u ($RES_SIM_223) (49) [SCAL] (1) resistor.LossPower = resistor.v * inductor.i ($RES_SIM_25) (50) [SCAL] (1) pulse2m.twomPulse.realPassThrough[1].y = pulse2m.twomPulse.positiveThreshold[1].u ($RES_SIM_224) (51) [SCAL] (1) resistor.v = resistor.R_actual * inductor.i ($RES_SIM_26) (52) [SCAL] (1) pulse2m.twomPulse.realPassThrough[1].y = pulse2m.twomPulse.negativeThreshold[1].u ($RES_SIM_225) (53) [FOR-] (3) ($RES_SIM_140) (53) [----] for $i1 in 1:3 loop (53) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].i = sineVoltage_p.sineVoltage[$i1].p.i ($RES_SIM_141) (53) [----] end for; (54) [SCAL] (1) resistor.R_actual = resistor.R * (1.0 + resistor.alpha * (resistor.T - resistor.T_ref)) ($RES_SIM_27) (55) [ARRY] (3) pulse2m.twomPulse.realPassThrough.u = pulse2m.twomPulse.v ($RES_SIM_226) (56) [FOR-] (3) ($RES_SIM_142) (56) [----] for $i1 in 1:3 loop (56) [----] [SCAL] (1) 0.0 = sineVoltage_p.sineVoltage[$i1].p.i + sineVoltage_p.sineVoltage[$i1].n.i ($RES_SIM_143) (56) [----] end for; (57) [ARRY] (3) sineVoltage_n.i = sineVoltage_n.plug_p.pin.i ($RES_SIM_29) (58) [SCAL] (1) pulse2m.twomPulse.replicator.y[3] = pulse2m.twomPulse.greaterPositive[3].u2 ($RES_SIM_229) (59) [FOR-] (3) ($RES_SIM_144) (59) [----] for $i1 in 1:3 loop (59) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].v = sineVoltage_p.sineVoltage[$i1].p.v - sineVoltage_p.sineVoltage[$i1].n.v ($RES_SIM_145) (59) [----] end for; (60) [FOR-] (3) ($RES_SIM_146) (60) [----] for $i1 in 1:3 loop (60) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].v = sineVoltage_p.sineVoltage[$i1].signalSource.y ($RES_SIM_147) (60) [----] end for; (61) [FOR-] (3) ($RES_SIM_148) (61) [----] for $i1 in 1:3 loop (61) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].signalSource.y = sineVoltage_p.sineVoltage[$i1].signalSource.offset + (if $SEV_17[$i1] then 0.0 else sineVoltage_p.sineVoltage[$i1].signalSource.amplitude * $FUN_2[$i1]) ($RES_SIM_149) (61) [----] end for; (62) [SCAL] (1) $TEV_0 = $PRE.pulse2m.twomPulse.timerNegative.entryTime ($RES_EVT_314) (63) [SCAL] (1) $TEV_1 = $PRE.pulse2m.twomPulse.timerPositive.entryTime ($RES_EVT_315) (64) [ARRY] (3) sineVoltage_n.v = sineVoltage_n.plug_p.pin.v - sineVoltage_n.plug_n.pin.v ($RES_SIM_30) (65) [FOR-] (3) ($RES_SIM_31) (65) [----] for $i1 in 1:3 loop (65) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].i = sineVoltage_n.sineVoltage[$i1].p.i ($RES_SIM_32) (65) [----] end for; (66) [SCAL] (1) pulse2m.twomPulse.replicator.y[3] = pulse2m.twomPulse.negativeEqual[3].u2 ($RES_SIM_230) (67) [SCAL] (1) pulse2m.twomPulse.replicator.y[2] = pulse2m.twomPulse.greaterPositive[2].u2 ($RES_SIM_231) (68) [FOR-] (3) ($RES_SIM_33) (68) [----] for $i1 in 1:3 loop (68) [----] [SCAL] (1) 0.0 = sineVoltage_n.sineVoltage[$i1].p.i + sineVoltage_n.sineVoltage[$i1].n.i ($RES_SIM_34) (68) [----] end for; (69) [SCAL] (1) pulse2m.twomPulse.replicator.y[2] = pulse2m.twomPulse.negativeEqual[2].u2 ($RES_SIM_232) (70) [SCAL] (1) pulse2m.twomPulse.replicator.y[1] = pulse2m.twomPulse.greaterPositive[1].u2 ($RES_SIM_233) (71) [FOR-] (3) ($RES_SIM_35) (71) [----] for $i1 in 1:3 loop (71) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].v = sineVoltage_n.sineVoltage[$i1].p.v - sineVoltage_n.sineVoltage[$i1].n.v ($RES_SIM_36) (71) [----] end for; (72) [SCAL] (1) pulse2m.twomPulse.replicator.y[1] = pulse2m.twomPulse.negativeEqual[1].u2 ($RES_SIM_234) (73) [FOR-] (3) ($RES_SIM_37) (73) [----] for $i1 in 1:3 loop (73) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].v = sineVoltage_n.sineVoltage[$i1].signalSource.y ($RES_SIM_38) (73) [----] end for; (74) [ARRY] (3) pulse2m.twomPulse.negativeEqual.y = pulse2m.twomPulse.fire_n ($RES_SIM_236) (75) [FOR-] (3) ($RES_SIM_151) (75) [----] for $i1 in 1:3 loop (75) [----] [SCAL] (1) star.plug_p.pin[$i1].v = 0.0 ($RES_SIM_152) (75) [----] end for; (76) [ARRY] (3) pulse2m.twomPulse.greaterPositive.y = pulse2m.twomPulse.fire_p ($RES_SIM_237) (77) [FOR-] (3) ($RES_SIM_39) (77) [----] for $i1 in 1:3 loop (77) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].signalSource.y = sineVoltage_n.sineVoltage[$i1].signalSource.offset + (if $SEV_1[$i1] then 0.0 else sineVoltage_n.sineVoltage[$i1].signalSource.amplitude * $FUN_9[$i1]) ($RES_SIM_40) (77) [----] end for; (78) [ARRY] (3) pulse2m.twomPulse.negativeEqual.u1 = pulse2m.twomPulse.timerNegative.y ($RES_SIM_238) (79) [ARRY] (3) pulse2m.twomPulse.timerPositive.y = pulse2m.twomPulse.greaterPositive.u1 ($RES_SIM_239) (80) [SCAL] (1) -(currentSensor.n.i + inductor.i) = 0.0 ($RES_SIM_154) (81) [SCAL] (1) inductor.i + rectifier.iDC = 0.0 ($RES_SIM_157) (82) [SCAL] (1) (rectifier.star_p.pin_n.i + rectifier.star_n.pin_n.i) - rectifier.iDC = 0.0 ($RES_SIM_158) (83) [SCAL] (1) star.pin_n.i + currentSensor.n.i + ground.p.i = 0.0 ($RES_SIM_159) (84) [SCAL] (1) $TEV_8 = $PRE.rectifier.thyristor_n.idealThyristor[$i1].off ($RES_EVT_322) (85) [SCAL] (1) $TEV_9 = $PRE.rectifier.thyristor_p.idealThyristor[$i1].off ($RES_EVT_323) (86) [FOR-] (3) ($RES_EVT_325) (86) [----] for $i1 in 1:3 loop (86) [----] [SCAL] (1) $SEV_1[$i1] = time < sineVoltage_n.sineVoltage[$i1].signalSource.startTime ($RES_EVT_326) (86) [----] end for; (87) [SCAL] (1) $SEV_2 = pulse2m.twomPulse.constantconstantFiringAngle.k > pulse2m.twomPulse.limiter.uMax ($RES_EVT_327) (88) [SCAL] (1) $SEV_3 = pulse2m.twomPulse.constantconstantFiringAngle.k < pulse2m.twomPulse.limiter.uMin ($RES_EVT_328) (89) [FOR-] (3) ($RES_SIM_41) (89) [----] for $i1 in 1:3 loop (89) [----] [SCAL] (1) pulse2m.gain[$i1].y = pulse2m.gain[$i1].k * pulse2m.gain[$i1].u ($RES_SIM_42) (89) [----] end for; (90) [ARRY] (3) pulse2m.twomPulse.negativeThreshold.y = pulse2m.twomPulse.timerNegative.u ($RES_SIM_240) (91) [ARRY] (3) pulse2m.twomPulse.positiveThreshold.y = pulse2m.twomPulse.timerPositive.u ($RES_SIM_241) (92) [FOR-] (3) ($RES_SIM_43) (92) [----] for $i1 in 1:3 loop (92) [----] [SCAL] (1) pulse2m.voltageSensor.potentialSensor[$i1].phi = pulse2m.voltageSensor.potentialSensor[$i1].p.v ($RES_SIM_44) (92) [----] end for; (93) [SCAL] (1) meanVoltage.u = rootMeanSquareVoltage.product.u[1] ($RES_SIM_242) (94) [ARRY] (3) rectifier.vAC = rectifier.ac_p.pin[:].v - rectifier.ac_n.pin[:].v ($RES_BND_293) (95) [SCAL] (1) meanVoltage.u = rootMeanSquareVoltage.product.u[2] ($RES_SIM_243) (96) [FOR-] (3) ($RES_SIM_45) (96) [----] for $i1 in 1:3 loop (96) [----] [SCAL] (1) pulse2m.voltageSensor.potentialSensor[$i1].p.i = 0.0 ($RES_SIM_46) (96) [----] end for; (97) [ARRY] (3) rectifier.iAC = rectifier.ac_p.pin[:].i ($RES_BND_294) (98) [ARRY] (3) rectifier.powerAC = rectifier.vAC * rectifier.iAC ($RES_BND_295) (99) [ARRY] (3) pulse2m.fire_n = rectifier.fire_n ($RES_SIM_160) (100) [FOR-] (3) ($RES_SIM_47) (100) [----] for $i1 in 1:3 loop (100) [----] [SCAL] (1) pulse2m.twomPulse.realPassThrough[$i1].y = pulse2m.twomPulse.realPassThrough[$i1].u ($RES_SIM_48) (100) [----] end for; (101) [FOR-] (3) ($RES_SIM_161) (101) [----] for $i1 in 1:3 loop (101) [----] [SCAL] (1) sineVoltage_n.plug_n.pin[$i1].i + rectifier.ac_n.pin[$i1].i = 0.0 ($RES_SIM_162) (101) [----] end for; (102) [ARRY] (3) rectifier.andCondition_p.u1 = rectifier.fire_p ($RES_SIM_247) (103) [SCAL] (1) pulse2m.twomPulse.limiter.y = homotopy(smooth(0, if $SEV_2 then pulse2m.twomPulse.limiter.uMax else if $SEV_3 then pulse2m.twomPulse.limiter.uMin else pulse2m.twomPulse.constantconstantFiringAngle.k), pulse2m.twomPulse.constantconstantFiringAngle.k) ($RES_SIM_49) (104) [SCAL] (1) rectifier.enableLogic.internalEnable[3] = rectifier.andCondition_n[3].u2 ($RES_SIM_248) (105) [ARRY] (3) sineVoltage_n.plug_n.pin.v = rectifier.ac_n.pin.v ($RES_SIM_163) (106) [SCAL] (1) rectifier.powerDC = rectifier.vDC * rectifier.iDC ($RES_BND_299) (107) [SCAL] (1) rectifier.enableLogic.internalEnable[3] = rectifier.andCondition_p[3].u2 ($RES_SIM_249) (108) [SCAL] (1) star.plug_p.pin[3].i + sineVoltage_p.plug_n.pin[3].i + sineVoltage_n.plug_p.pin[3].i = 0.0 ($RES_SIM_164) (109) [SCAL] (1) star.plug_p.pin[2].i + sineVoltage_p.plug_n.pin[2].i + sineVoltage_n.plug_p.pin[2].i = 0.0 ($RES_SIM_165) (110) [SCAL] (1) star.plug_p.pin[1].i + sineVoltage_p.plug_n.pin[1].i + sineVoltage_n.plug_p.pin[1].i = 0.0 ($RES_SIM_166) (111) [SCAL] (1) star.plug_p.pin[3].v = sineVoltage_n.plug_p.pin[3].v ($RES_SIM_167) (112) [SCAL] (1) star.plug_p.pin[3].v = sineVoltage_p.plug_n.pin[3].v ($RES_SIM_168) (113) [SCAL] (1) star.plug_p.pin[2].v = sineVoltage_n.plug_p.pin[2].v ($RES_SIM_169) (114) [FOR-] (3) ($RES_EVT_330) (114) [----] for $i1 in 1:3 loop (114) [----] [SCAL] (1) $SEV_5[$i1] = pulse2m.twomPulse.negativeEqual[$i1].u1 > pulse2m.twomPulse.negativeEqual[$i1].u2 ($RES_EVT_331) (114) [----] end for; (115) [FOR-] (3) ($RES_EVT_332) (115) [----] for $i1 in 1:3 loop (115) [----] [SCAL] (1) $SEV_6[$i1] = pulse2m.twomPulse.greaterPositive[$i1].u1 > pulse2m.twomPulse.greaterPositive[$i1].u2 ($RES_EVT_333) (115) [----] end for; (116) [FOR-] (3) ($RES_EVT_334) (116) [----] for $i1 in 1:3 loop (116) [----] [SCAL] (1) $SEV_7[$i1] = pulse2m.twomPulse.negativeThreshold[$i1].u < pulse2m.twomPulse.negativeThreshold[$i1].threshold ($RES_EVT_335) (116) [----] end for; (117) [ARRY] (3) rectifier.thyristor_p.off = rectifier.thyristor_p.idealThyristor.off ($RES_BND_300) (118) [FOR-] (3) ($RES_EVT_336) (118) [----] for $i1 in 1:3 loop (118) [----] [SCAL] (1) $SEV_8[$i1] = pulse2m.twomPulse.positiveThreshold[$i1].u > pulse2m.twomPulse.positiveThreshold[$i1].threshold ($RES_EVT_337) (118) [----] end for; (119) [ARRY] (3) rectifier.thyristor_n.off = rectifier.thyristor_n.idealThyristor.off ($RES_BND_301) (120) [FOR-] (3) ($RES_EVT_338) (120) [----] for $i1 in 1:3 loop (120) [----] [SCAL] (1) $SEV_9[$i1] = rectifier.thyristor_n.idealThyristor[$i1].s < 0.0 ($RES_EVT_339) (120) [----] end for; (121) [SCAL] (1) rectifier.enableLogic.internalEnable[2] = rectifier.andCondition_n[2].u2 ($RES_SIM_250) (122) [ARRY] (3) pulse2m.twomPulse.replicator.y = {pulse2m.twomPulse.gain.y for $i1 in 1:3} ($RES_SIM_52) (123) [SCAL] (1) rectifier.enableLogic.internalEnable[2] = rectifier.andCondition_p[2].u2 ($RES_SIM_251) (124) [SCAL] (1) pulse2m.twomPulse.gain.y = pulse2m.twomPulse.gain.k * pulse2m.twomPulse.limiter.y ($RES_SIM_53) (125) [SCAL] (1) rectifier.enableLogic.internalEnable[1] = rectifier.andCondition_n[1].u2 ($RES_SIM_252) (126) [FOR-] (3) ($RES_SIM_54) (126) [----] for $i1 in 1:3 loop (126) [----] [SCAL] (1) pulse2m.twomPulse.negativeEqual[$i1].y = $SEV_5[$i1] ($RES_SIM_55) (126) [----] end for; (127) [SCAL] (1) rectifier.enableLogic.internalEnable[1] = rectifier.andCondition_p[1].u2 ($RES_SIM_253) (128) [ARRY] (3) rectifier.fire_n = rectifier.andCondition_n.u1 ($RES_SIM_254) (129) [FOR-] (3) ($RES_SIM_56) (129) [----] for $i1 in 1:3 loop (129) [----] [SCAL] (1) pulse2m.twomPulse.greaterPositive[$i1].y = $SEV_6[$i1] ($RES_SIM_57) (129) [----] end for; (130) [ARRY] (3) rectifier.andCondition_n.y = rectifier.thyristor_n.fire ($RES_SIM_255) (131) [SCAL] (1) star.plug_p.pin[2].v = sineVoltage_p.plug_n.pin[2].v ($RES_SIM_170) (132) [ARRY] (3) rectifier.andCondition_p.y = rectifier.thyristor_p.fire ($RES_SIM_256) (133) [SCAL] (1) star.plug_p.pin[1].v = sineVoltage_n.plug_p.pin[1].v ($RES_SIM_171) (134) [FOR-] (3) ($RES_SIM_58) (134) [----] for $i1 in 1:3 loop (134) [----] [SCAL] (1) pulse2m.twomPulse.timerNegative[$i1].y = if pulse2m.twomPulse.timerNegative[$i1].u then time - pulse2m.twomPulse.timerNegative[$i1].entryTime else 0.0 ($RES_SIM_59) (134) [----] end for; (135) [FOR-] (3) ($RES_SIM_257) (135) [----] for $i1 in 1:3 loop (135) [----] [SCAL] (1) rectifier.thyristor_n.plug_n.pin[$i1].i + rectifier.star_n.plug_p.pin[$i1].i = 0.0 ($RES_SIM_258) (135) [----] end for; (136) [SCAL] (1) star.plug_p.pin[1].v = sineVoltage_p.plug_n.pin[1].v ($RES_SIM_172) (137) [SCAL] (1) rectifier.ac_p.pin[3].i + sineVoltage_p.plug_p.pin[3].i + pulse2m.ac.pin[3].i = 0.0 ($RES_SIM_173) (138) [ARRY] (3) rectifier.thyristor_n.plug_n.pin.v = rectifier.star_n.plug_p.pin.v ($RES_SIM_259) (139) [SCAL] (1) rectifier.ac_p.pin[2].i + sineVoltage_p.plug_p.pin[2].i + pulse2m.ac.pin[2].i = 0.0 ($RES_SIM_174) (140) [SCAL] (1) rectifier.ac_p.pin[1].i + sineVoltage_p.plug_p.pin[1].i + pulse2m.ac.pin[1].i = 0.0 ($RES_SIM_175) (141) [SCAL] (1) sineVoltage_p.plug_p.pin[3].v = pulse2m.ac.pin[3].v ($RES_SIM_176) (142) [SCAL] (1) sineVoltage_p.plug_p.pin[3].v = rectifier.ac_p.pin[3].v ($RES_SIM_177) (143) [SCAL] (1) sineVoltage_p.plug_p.pin[2].v = pulse2m.ac.pin[2].v ($RES_SIM_178) (144) [SCAL] (1) sineVoltage_p.plug_p.pin[2].v = rectifier.ac_p.pin[2].v ($RES_SIM_179) (145) [FOR-] (3) ($RES_EVT_340) (145) [----] for $i1 in 1:3 loop (145) [----] [SCAL] (1) $SEV_10[$i1] = $TEV_8 and not rectifier.thyristor_n.idealThyristor[$i1].fire ($RES_EVT_341) (145) [----] end for; (146) [FOR-] (3) ($RES_EVT_342) (146) [----] for $i1 in 1:3 loop (146) [----] [SCAL] (1) $SEV_11[$i1] = $SEV_9[$i1] or $SEV_10[$i1] ($RES_EVT_343) (146) [----] end for; (147) [SCAL] (1) -star.pin_n.i = sum(star.plug_p.pin.i) ($RES_$AUX_313) (148) [FOR-] (3) ($RES_EVT_344) (148) [----] for $i1 in 1:3 loop (148) [----] [SCAL] (1) $SEV_12[$i1] = rectifier.thyristor_p.idealThyristor[$i1].s < 0.0 ($RES_EVT_345) (148) [----] end for; (149) [FOR-] (3) ($RES_$AUX_311) (149) [----] for $i1 in 1:3 loop (149) [----] [SCAL] (1) $FUN_2[$i1] = sin(sineVoltage_p.sineVoltage[$i1].signalSource.freqHz * 6.283185307179586 * (time - sineVoltage_p.sineVoltage[$i1].signalSource.startTime) + sineVoltage_p.sineVoltage[$i1].signalSource.phase) ($RES_$AUX_312) (149) [----] end for; (150) [FOR-] (3) ($RES_EVT_346) (150) [----] for $i1 in 1:3 loop (150) [----] [SCAL] (1) $SEV_13[$i1] = $TEV_9 and not rectifier.thyristor_p.idealThyristor[$i1].fire ($RES_EVT_347) (150) [----] end for; (151) [SCAL] (1) -rectifier.star_p.pin_n.i = sum(rectifier.star_p.plug_p.pin.i) ($RES_$AUX_310) (152) [FOR-] (3) ($RES_EVT_348) (152) [----] for $i1 in 1:3 loop (152) [----] [SCAL] (1) $SEV_14[$i1] = $SEV_12[$i1] or $SEV_13[$i1] ($RES_EVT_349) (152) [----] end for; (153) [FOR-] (3) ($RES_SIM_100) (153) [----] for $i1 in 1:3 loop (153) [----] [SCAL] (1) 0.0 = rectifier.thyristor_n.idealThyristor[$i1].p.i + rectifier.thyristor_n.idealThyristor[$i1].n.i ($RES_SIM_101) (153) [----] end for; (154) [FOR-] (3) ($RES_SIM_60) (154) [----] for $i1 in 1:3 loop (154) [----] [WHEN] (1)when pulse2m.twomPulse.timerNegative[$i1].u then (154) [----] [----] pulse2m.twomPulse.timerNegative[$i1].entryTime := time (154) [----] [----] end when; (154) [----] end for; (155) [FOR-] (3) ($RES_SIM_260) (155) [----] for $i1 in 1:3 loop (155) [----] [SCAL] (1) rectifier.thyristor_n.plug_p.pin[$i1].i - rectifier.ac_n.pin[$i1].i = 0.0 ($RES_SIM_261) (155) [----] end for; (156) [FOR-] (3) ($RES_SIM_102) (156) [----] for $i1 in 1:3 loop (156) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].v = rectifier.thyristor_n.idealThyristor[$i1].p.v - rectifier.thyristor_n.idealThyristor[$i1].n.v ($RES_SIM_103) (156) [----] end for; (157) [FOR-] (3) ($RES_SIM_62) (157) [----] for $i1 in 1:3 loop (157) [----] [SCAL] (1) pulse2m.twomPulse.timerPositive[$i1].y = if pulse2m.twomPulse.timerPositive[$i1].u then time - pulse2m.twomPulse.timerPositive[$i1].entryTime else 0.0 ($RES_SIM_63) (157) [----] end for; (158) [ARRY] (3) rectifier.thyristor_n.plug_p.pin.v = rectifier.ac_n.pin.v ($RES_SIM_262) (159) [FOR-] (3) ($RES_SIM_64) (159) [----] for $i1 in 1:3 loop (159) [----] [WHEN] (1)when pulse2m.twomPulse.timerPositive[$i1].u then (159) [----] [----] pulse2m.twomPulse.timerPositive[$i1].entryTime := time (159) [----] [----] end when; (159) [----] end for; (160) [FOR-] (3) ($RES_SIM_263) (160) [----] for $i1 in 1:3 loop (160) [----] [SCAL] (1) rectifier.thyristor_p.plug_p.pin[$i1].i - rectifier.ac_p.pin[$i1].i = 0.0 ($RES_SIM_264) (160) [----] end for; (161) [FOR-] (3) ($RES_SIM_106) (161) [----] for $i1 in 1:3 loop (161) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].LossPower = rectifier.thyristor_n.idealThyristor[$i1].v * rectifier.thyristor_n.idealThyristor[$i1].i ($RES_SIM_107) (161) [----] end for; (162) [FOR-] (3) ($RES_SIM_66) (162) [----] for $i1 in 1:3 loop (162) [----] [SCAL] (1) pulse2m.twomPulse.negativeThreshold[$i1].y = $SEV_7[$i1] ($RES_SIM_67) (162) [----] end for; (163) [ARRY] (3) rectifier.ac_p.pin.v = rectifier.thyristor_p.plug_p.pin.v ($RES_SIM_265) (164) [SCAL] (1) sineVoltage_p.plug_p.pin[1].v = pulse2m.ac.pin[1].v ($RES_SIM_180) (165) [SCAL] (1) sineVoltage_p.plug_p.pin[1].v = rectifier.ac_p.pin[1].v ($RES_SIM_181) (166) [FOR-] (3) ($RES_SIM_108) (166) [----] for $i1 in 1:3 loop (166) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].i = rectifier.thyristor_n.idealThyristor[$i1].s * (if rectifier.thyristor_n.idealThyristor[$i1].off then rectifier.thyristor_n.idealThyristor[$i1].Goff else 1.0) + rectifier.thyristor_n.idealThyristor[$i1].Goff * rectifier.thyristor_n.idealThyristor[$i1].Vknee ($RES_SIM_109) (166) [----] end for; (167) [FOR-] (3) ($RES_SIM_68) (167) [----] for $i1 in 1:3 loop (167) [----] [SCAL] (1) pulse2m.twomPulse.positiveThreshold[$i1].y = $SEV_8[$i1] ($RES_SIM_69) (167) [----] end for; (168) [ARRY] (3) pulse2m.fire_p = rectifier.fire_p ($RES_SIM_182) (169) [FOR-] (3) ($RES_SIM_268) (169) [----] for $i1 in 1:3 loop (169) [----] [SCAL] (1) rectifier.thyristor_p.plug_n.pin[$i1].i + rectifier.star_p.plug_p.pin[$i1].i = 0.0 ($RES_SIM_269) (169) [----] end for; (170) [SCAL] (1) -rectifier.star_n.pin_n.i = sum(rectifier.star_n.plug_p.pin.i) ($RES_$AUX_309) (171) [SCAL] (1) $FUN_5 = sum(rectifier.thyristor_p.idealThyristor.LossPower) ($RES_$AUX_308) (172) [SCAL] (1) $FUN_6 = sum(rectifier.thyristor_n.idealThyristor.LossPower) ($RES_$AUX_307) (173) [FOR-] (3) ($RES_EVT_350) (173) [----] for $i1 in 1:3 loop (173) [----] [SCAL] (1) $SEV_15[$i1] = rectifier.andCondition_n[$i1].u1 and rectifier.andCondition_n[$i1].u2 ($RES_EVT_351) (173) [----] end for; (174) [SCAL] (1) rootMeanSquareVoltage.product.y = product(rootMeanSquareVoltage.product.u) ($RES_$AUX_306) (175) [FOR-] (3) ($RES_EVT_352) (175) [----] for $i1 in 1:3 loop (175) [----] [SCAL] (1) $SEV_16[$i1] = rectifier.andCondition_p[$i1].u1 and rectifier.andCondition_p[$i1].u2 ($RES_EVT_353) (175) [----] end for; (176) [FOR-] (3) ($RES_$AUX_303) (176) [----] for $i1 in 1:3 loop (176) [----] [SCAL] (1) $FUN_9[$i1] = sin(sineVoltage_n.sineVoltage[$i1].signalSource.freqHz * 6.283185307179586 * (time - sineVoltage_n.sineVoltage[$i1].signalSource.startTime) + sineVoltage_n.sineVoltage[$i1].signalSource.phase) ($RES_$AUX_304) (176) [----] end for; (177) [FOR-] (3) ($RES_EVT_354) (177) [----] for $i1 in 1:3 loop (177) [----] [SCAL] (1) $SEV_17[$i1] = time < sineVoltage_p.sineVoltage[$i1].signalSource.startTime ($RES_EVT_355) (177) [----] end for; (178) [SCAL] (1) rectifier.powerTotalAC = sum(rectifier.powerAC) ($RES_$AUX_302) (179) [FOR-] (3) ($RES_SIM_110) (179) [----] for $i1 in 1:3 loop (179) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].v = rectifier.thyristor_n.idealThyristor[$i1].s * (if rectifier.thyristor_n.idealThyristor[$i1].off then 1.0 else rectifier.thyristor_n.idealThyristor[$i1].Ron) + rectifier.thyristor_n.idealThyristor[$i1].Vknee ($RES_SIM_111) (179) [----] end for; (180) [ARRY] (3) rectifier.thyristor_p.plug_n.pin.v = rectifier.star_p.plug_p.pin.v ($RES_SIM_270) (181) [FOR-] (3) ($RES_SIM_112) (181) [----] for $i1 in 1:3 loop (181) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].off = $SEV_11[$i1] ($RES_SIM_113) (181) [----] end for; (182) [ARRY] (3) rectifier.thyristor_n.fire = rectifier.thyristor_n.idealThyristor.fire ($RES_SIM_271) (183) [SCAL] (1) $DER.meanCurrent.x = -currentSensor.n.i ($RES_SIM_73) (184) [FOR-] (3) ($RES_SIM_272) (184) [----] for $i1 in 1:3 loop (184) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].n.i - rectifier.thyristor_n.plug_n.pin[$i1].i = 0.0 ($RES_SIM_273) (184) [----] end for; (185) [ARRY] (3) rectifier.thyristor_p.i = rectifier.thyristor_p.plug_p.pin.i ($RES_SIM_114) (186) [ARRY] (3) rectifier.thyristor_p.v = rectifier.thyristor_p.plug_p.pin.v - rectifier.thyristor_p.plug_n.pin.v ($RES_SIM_115) (187) [ARRY] (3) rectifier.thyristor_n.idealThyristor.n.v = rectifier.thyristor_n.plug_n.pin.v ($RES_SIM_274) (188) [FOR-] (3) ($RES_SIM_116) (188) [----] for $i1 in 1:3 loop (188) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].i = rectifier.thyristor_p.idealThyristor[$i1].p.i ($RES_SIM_117) (188) [----] end for; (189) [FOR-] (3) ($RES_SIM_275) (189) [----] for $i1 in 1:3 loop (189) [----] [SCAL] (1) rectifier.thyristor_n.idealThyristor[$i1].p.i - rectifier.thyristor_n.plug_p.pin[$i1].i = 0.0 ($RES_SIM_276) (189) [----] end for; (190) [FOR-] (3) ($RES_SIM_118) (190) [----] for $i1 in 1:3 loop (190) [----] [SCAL] (1) 0.0 = rectifier.thyristor_p.idealThyristor[$i1].p.i + rectifier.thyristor_p.idealThyristor[$i1].n.i ($RES_SIM_119) (190) [----] end for; (191) [ARRY] (3) rectifier.thyristor_n.plug_p.pin.v = rectifier.thyristor_n.idealThyristor.p.v ($RES_SIM_277) (192) [ARRY] (3) rectifier.thyristor_p.fire = rectifier.thyristor_p.idealThyristor.fire ($RES_SIM_278) (193) [FOR-] (3) ($RES_SIM_279) (193) [----] for $i1 in 1:3 loop (193) [----] [SCAL] (1) rectifier.thyristor_p.idealThyristor[$i1].n.i - rectifier.thyristor_p.plug_n.pin[$i1].i = 0.0 ($RES_SIM_280) (193) [----] end for; (194) [FOR-] (3) ($RES_SIM_194) (194) [----] for $i1 in 1:3 loop (194) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].n.i - sineVoltage_n.plug_n.pin[$i1].i = 0.0 ($RES_SIM_195) (194) [----] end for; (195) [ARRY] (3) sineVoltage_n.sineVoltage.n.v = sineVoltage_n.plug_n.pin.v ($RES_SIM_196) (196) [FOR-] (3) ($RES_SIM_197) (196) [----] for $i1 in 1:3 loop (196) [----] [SCAL] (1) sineVoltage_n.sineVoltage[$i1].p.i - sineVoltage_n.plug_p.pin[$i1].i = 0.0 ($RES_SIM_198) (196) [----] end for; (197) [ARRY] (3) sineVoltage_n.sineVoltage.p.v = sineVoltage_n.plug_p.pin.v ($RES_SIM_199) (198) [ARRY] (3) pulse2m.twomPulse.fire_p = pulse2m.fire_p ($RES_SIM_200) (199) [ARRY] (3) pulse2m.twomPulse.fire_n = pulse2m.fire_n ($RES_SIM_201) (200) [ARRY] (3) pulse2m.voltageSensor.phi = pulse2m.gain.u ($RES_SIM_202) (201) [ARRY] (3) pulse2m.gain.y = pulse2m.twomPulse.v ($RES_SIM_203)