Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries/ --ompython_omhome=/usr ModelicaTest_3.2.3_ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.3+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.3+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer,tolerance=1e-06,outputFormat="mat",numberOfIntervals=5000,variableFilter="time|housing.T|motor.inertiaRotor.phi|motor.inertiaRotor.w|motor.la.i",fileNamePrefix="ModelicaTest_3.2.3_ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer") translateModel(ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer,tolerance=1e-06,outputFormat="mat",numberOfIntervals=5000,variableFilter="time|housing.T|motor.inertiaRotor.phi|motor.inertiaRotor.w|motor.la.i",fileNamePrefix="ModelicaTest_3.2.3_ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001116/0.001116, allocations: 110.9 kB / 17.05 MB, free: 6.062 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001083/0.001083, allocations: 191.5 kB / 17.98 MB, free: 5.145 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.168/1.168, allocations: 205.1 MB / 223.8 MB, free: 12.26 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.3+maint.om/package.mo): time 0.1756/0.1756, allocations: 43.52 MB / 314.7 MB, free: 488 kB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 1.848e-05/1.867e-05, allocations: 6.219 kB / 384.1 MB, free: 56.4 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer): time 0.02916/0.02919, allocations: 46.84 MB / 431 MB, free: 16.86 MB / 318.1 MB Notification: Performance of NFInst.instExpressions: time 0.01848/0.04771, allocations: 21.32 MB / 452.3 MB, free: 11.51 MB / 334.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.000755/0.04849, allocations: 35.88 kB / 452.3 MB, free: 11.48 MB / 334.1 MB Notification: Performance of NFTyping.typeComponents: time 0.001402/0.0499, allocations: 0.7179 MB / 453 MB, free: 10.75 MB / 334.1 MB Notification: Performance of NFTyping.typeBindings: time 0.01383/0.06377, allocations: 5.521 MB / 458.6 MB, free: 5.242 MB / 334.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.005876/0.06966, allocations: 2.588 MB / 461.2 MB, free: 2.66 MB / 334.1 MB Notification: Performance of NFFlatten.flatten: time 0.002996/0.07266, allocations: 3.101 MB / 464.3 MB, free: 15.55 MB / 350.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.00118/0.07385, allocations: 1.175 MB / 465.4 MB, free: 14.39 MB / 350.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.001338/0.0752, allocations: 1.195 MB / 466.6 MB, free: 13.19 MB / 350.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.006072/0.08129, allocations: 4.116 MB / 470.7 MB, free: 9.016 MB / 350.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0001741/0.08147, allocations: 159.9 kB / 470.9 MB, free: 8.859 MB / 350.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.01037/0.09185, allocations: 7.709 MB / 478.6 MB, free: 1.148 MB / 350.1 MB Notification: Performance of combineBinaries: time 0.002003/0.09386, allocations: 2.853 MB / 481.5 MB, free: 14.26 MB / 366.1 MB Notification: Performance of replaceArrayConstructors: time 0.001208/0.09508, allocations: 1.797 MB / 483.3 MB, free: 12.44 MB / 366.1 MB Notification: Performance of NFVerifyModel.verify: time 0.000416/0.09551, allocations: 303.2 kB / 483.5 MB, free: 12.14 MB / 366.1 MB Notification: Performance of FrontEnd: time 0.0002053/0.09572, allocations: 55.75 kB / 483.6 MB, free: 12.09 MB / 366.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 337 (317) * Number of variables: 337 (337) Notification: Performance of Bindings: time 0.006606/0.1023, allocations: 8.778 MB / 492.4 MB, free: 3.09 MB / 366.1 MB Notification: Performance of FunctionAlias: time 0.0007503/0.1031, allocations: 0.9313 MB / 493.3 MB, free: 2.16 MB / 366.1 MB Notification: Performance of Early Inline: time 0.004553/0.1076, allocations: 5.044 MB / 498.4 MB, free: 13.07 MB / 382.1 MB Notification: Performance of simplify1: time 0.0002725/0.1079, allocations: 331.6 kB / 498.7 MB, free: 12.75 MB / 382.1 MB Notification: Performance of Alias: time 0.006841/0.1148, allocations: 7.184 MB / 0.494 GB, free: 4.891 MB / 382.1 MB Notification: Performance of simplify2: time 0.0002263/0.115, allocations: 235.7 kB / 0.4942 GB, free: 4.66 MB / 382.1 MB Notification: Performance of Events: time 0.0006748/0.1157, allocations: 0.6381 MB / 0.4949 GB, free: 4.035 MB / 382.1 MB Notification: Performance of Detect States: time 0.0007889/0.1165, allocations: 0.8946 MB / 0.4957 GB, free: 3.117 MB / 382.1 MB Notification: Performance of Partitioning: time 0.00128/0.1178, allocations: 1.341 MB / 0.497 GB, free: 1.613 MB / 382.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency pump.heatTransfer.states.T could not be devided by the body size 5 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (5) pump.heatTransfer.states = {pump.medium.state} ($RES_BND_328) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (176/176) **************************** (1) [ALGB] (1) Real Source.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (2) [ALGB] (1) final output Real motor.powerBalance.lossPowerCore = -motor.core.heatPort.Q_flow (3) [DISC] (1) Boolean $SEV_24 (4) [DISC] (1) Boolean $SEV_23 (5) [DISC] (1) Boolean $SEV_22 (6) [DISC] (1) Boolean $SEV_21 (7) [DISC] (1) Boolean $SEV_20 (8) [DER-] (1) Real $DER.pump.phi (9) [ALGB] (1) protected Real Valve.state_a.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (10) [ALGB] (1) final Real motor.thermalAmbient.Q_flowCore = motor.thermalAmbient.Q_flowCore (11) [ALGB] (1) Real[1] pump.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (12) [ALGB] (1) Real stepVoltage.p.v (13) [ALGB] (1) flow Real[1] Sink.ports.m_flow (min = {-1e60}, max = {1e60}) (14) [DER-] (1) Real $DER.motor.inertiaStator.w (15) [ALGB] (1) final input Real[1, 1] pump.heatTransfer.states.T = {pump.medium.state.T} (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (16) [ALGB] (1) Real motor.airGapDC.pin_ep.v (17) [DISC] (1) Boolean $TEV_1 (18) [DISC] (1) Boolean $TEV_0 (19) [ALGB] (1) flow Real motor.brush.heatPort.Q_flow = -(-motor.brush.heatPort.Q_flow) (20) [ALGB] (1) final output Real motor.powerBalance.powerArmature = motor.va * motor.ia (21) [ALGB] (1) final Real motor.thermalAmbient.Q_flowArmature = motor.thermalAmbient.Q_flowArmature (22) [ALGB] (1) final input Real[1, 1] pump.heatTransfer.states.d = {pump.medium.state.d} (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (23) [DISC] (1) Integer Sink.medium.phase (fixed = false, start = 1, min = 0, max = 2) (24) [DISC] (1) Boolean $SEV_19 (25) [DER-] (1) Real $DER.motor.phiMechanical (26) [ALGB] (1) final input Real[1, 1] pump.heatTransfer.states.h = {pump.medium.state.h} (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (27) [ALGB] (1) protected Real Valve.relativeFlowCoefficient (28) [ALGB] (1) Real pump.m_flow = pump.m_flow (29) [DISC] (1) Boolean $SEV_16 (30) [DISC] (1) Boolean $SEV_13 (31) [DISC] (1) Boolean $SEV_10 (32) [ALGB] (1) final input Real[1, 1] pump.heatTransfer.states.p = {pump.medium.state.p} (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (33) [ALGB] (1) Real motor.strayLoad.n.v (34) [ALGB] (1) final Real motor.thermalAmbient.Q_flowTotal = motor.thermalAmbient.Q_flowBrush + motor.thermalAmbient.Q_flowStrayLoad + motor.thermalAmbient.Q_flowArmature + motor.thermalAmbient.Q_flowCore + motor.thermalAmbient.Q_flowFriction + 0.0 (35) [ALGB] (1) Real Valve.V_flow = (-Valve.port_b.m_flow) / Modelica.Fluid.Utilities.regStep(-Valve.port_b.m_flow, ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.density(Valve.state_a), ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.density(Valve.state_b), Valve.m_flow_small) (36) [ALGB] (1) flow Real motor.friction.heatPort.Q_flow = -(-motor.friction.heatPort.Q_flow) (37) [ALGB] (1) Real motor.ra.n.v (38) [ALGB] (1) Real Valve.port_a_T = Modelica.Fluid.Utilities.regStep(-Valve.port_b.m_flow, ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.temperature(Valve.state_a), ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.temperature(ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.setState_phX(99999.99999999999 * pump.medium.p_bar, Valve.port_a.h_outflow, {}, 0, 0)), Valve.m_flow_small) (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (39) [DER-] (1) Real $DER.motor.friction.phi (40) [ALGB] (1) flow Real motor.strayLoad.heatPort.Q_flow = -(-motor.strayLoad.heatPort.Q_flow) (41) [ALGB] (1) Real motor.strayLoad.w (42) [ALGB] (1) stream Real Valve.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (43) [ALGB] (1) Real pump.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (44) [DISC] (1) Integer Sink.medium.state.phase (min = 0, max = 2) (45) [ALGB] (1) Real Valve.port_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (46) [ALGB] (1) Real motor.airGapDC.vai (47) [DER-] (1) Real $DER.motor.strayLoad.phi (48) [ALGB] (1) Real Sink.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (49) [ALGB] (1) Real Source.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (50) [ALGB] (1) Real pump.head = pump.dp_pump / (pump.g * pump.rho) (51) [ALGB] (1) Real motor.ra.R_actual (52) [ALGB] (1) final output Real motor.powerBalance.lossPowerPermanentMagnet = 0.0 (53) [ALGB] (1) Real motor.airGapDC.pin_an.v (54) [ALGB] (1) Real Source.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (55) [ALGB] (1) stream Real Valve.port_b.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (56) [ALGB] (1) flow Real motor.inertiaStator.flange_a.tau (57) [ALGB] (1) flow Real pump.heatPort.Q_flow (58) [ALGB] (1) Real Sink.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - Sink.medium.T_degC)) (59) [ALGB] (1) Real stepVoltage.v (60) [ALGB] (1) final output Real motor.powerBalance.lossPowerStrayLoad = -motor.strayLoad.heatPort.Q_flow (61) [ALGB] (1) final input Real pump.monitoring.state_in.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (62) [ALGB] (1) Real motor.ie.v (63) [ALGB] (1) Real Source.medium.h (StateSelect = default) (64) [ALGB] (1) Real Sink.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (65) [ALGB] (1) final output Real motor.powerBalance.lossPowerBrush = -motor.brush.heatPort.Q_flow (66) [ALGB] (1) Real Source.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (67) [ALGB] (1) Real Sink.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (68) [ALGB] (1) Real pump.dp_pump = 99999.99999999999 * pump.medium.p_bar - pump.port_a.p (69) [ALGB] (1) Real pump.V_flow_single (start = pump.m_flow_start / (pump.nParallel * pump.rho_nominal)) (70) [ALGB] (1) Real $FUN_4 (71) [ALGB] (1) Real $FUN_3 (72) [ALGB] (1) Real pump.Qb_flow (73) [ALGB] (1) flow Real ground.p.i (74) [ALGB] (1) Real $FUN_2 (75) [DER-] (1) Real $DER.motor.airGapDC.psi_e (76) [ALGB] (1) final input Real pump.monitoring.state_in.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (77) [ALGB] (1) Real motor.inertiaStator.a (78) [ALGB] (1) Real $FUN_1 (79) [ALGB] (1) final input Real pump.monitoring.state_in.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (80) [ALGB] (1) Real Valve.dp (start = Valve.dp_start) (81) [ALGB] (1) Real pump.eta (82) [DISC] (1) Integer pump.medium.phase (fixed = false, start = 1, min = 0, max = 2) (83) [ALGB] (1) flow Real motor.inertiaRotor.flange_b.tau (84) [ALGB] (1) Real[1] pump.heatTransfer.Ts = {ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.pump.heatTransfer.Medium.temperature(pump.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (85) [ALGB] (1) Real motor.brush.i (86) [ALGB] (1) final input Real pump.monitoring.state_in.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (87) [ALGB] (1) Real housing.der_T (start = 0.0) (88) [ALGB] (1) protected Real motor.core.wLimit = noEvent(max(noEvent(abs(motor.core.w)), motor.core.coreParameters.wMin)) (89) [ALGB] (1) Real[1] pump.heatTransfer.Q_flows (90) [ALGB] (1) Real pump.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (91) [ALGB] (1) Real Valve.port_b_T = Modelica.Fluid.Utilities.regStep(Valve.port_b.m_flow, ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.temperature(Valve.state_b), ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.temperature(ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.Valve.Medium.setState_phX(Valve.port_b.p, Valve.port_b.h_outflow, {}, 0, 0)), Valve.m_flow_small) (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (92) [ALGB] (1) Real pump.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - pump.medium.T_degC)) (93) [ALGB] (1) flow Real motor.core.heatPort.Q_flow = -(-motor.core.heatPort.Q_flow) (94) [ALGB] (1) Real motor.core.v (95) [ALGB] (1) final Real motor.core.w = motor.core.w (96) [ALGB] (1) final output Real motor.powerBalance.lossPowerFriction = -motor.friction.heatPort.Q_flow (97) [ALGB] (1) Real[1] Source.ports.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (98) [ALGB] (1) Real motor.friction.w (99) [DISC] (1) Integer pump.medium.state.phase (min = 0, max = 2) (100) [ALGB] (1) Real pump.Wb_flow (101) [ALGB] (1) flow Real motor.fixed.flange.tau (102) [DISC] (1) Boolean $SEV_9 (103) [DISC] (1) Boolean $SEV_8 (104) [ALGB] (1) final input Real pump.monitoring.state.T = pump.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (105) [DISC] (1) Boolean $SEV_7 (106) [ALGB] (1) Real pump.m (min = 0.0) (107) [DISC] (1) Boolean $SEV_6 (108) [DISC] (1) Boolean $SEV_5 (109) [ALGB] (1) Real pump.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (110) [DISC] (1) Boolean $SEV_4 (111) [DISC] (1) Boolean $SEV_3 (112) [DISC] (1) Boolean $SEV_2 (113) [ALGB] (1) Real pump.m_flow_single = pump.m_flow / pump.nParallel (114) [ALGB] (1) Real motor.tauElectrical = motor.tauElectrical (115) [ALGB] (1) Real pump.W_single (116) [ALGB] (1) Real pump.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (117) [ALGB] (1) protected Real Valve.minLimiter.y (118) [ALGB] (1) Real motor.ia = motor.ia (fixed = true, start = 0.0) (119) [ALGB] (1) final input Real pump.monitoring.state.d = pump.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (120) [ALGB] (1) Real pump.Hb_flow (121) [ALGB] (1) Real pump.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (122) [ALGB] (1) final Real motor.thermalAmbient.Q_flowBrush = motor.thermalAmbient.Q_flowBrush (123) [ALGB] (1) final input Real pump.monitoring.state.h = pump.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (124) [DISC] (1) final input Integer[1, 1] pump.heatTransfer.states.phase = {pump.medium.state.phase} (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (125) [ALGB] (1) Real pump.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (126) [ALGB] (1) Real pump.U (127) [ALGB] (1) final input Real pump.monitoring.state.p = pump.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (128) [ALGB] (1) Real pump.N (start = pump.N_nominal) (129) [ALGB] (1) Real Sink.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (130) [ALGB] (1) Real pump.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (131) [ALGB] (1) Real motor.tauShaft = -(-motor.tauShaft) (132) [DER-] (1) Real $DER.motor.inertiaRotor.w (133) [ALGB] (1) protected Real Valve.state_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (134) [ALGB] (1) Real Sink.medium.h (StateSelect = default) (135) [ALGB] (1) Real Sink.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (136) [ALGB] (1) protected Real Valve.state_b.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (137) [ALGB] (1) Real motor.airGapDC.vei (138) [ALGB] (1) final output Real motor.powerBalance.lossPowerTotal = motor.powerBalance.lossPowerBrush + motor.powerBalance.lossPowerStrayLoad + motor.powerBalance.lossPowerArmature + motor.powerBalance.lossPowerCore + motor.powerBalance.lossPowerFriction + motor.powerBalance.lossPowerPermanentMagnet (139) [ALGB] (1) Real motor.airGapDC.pin_ap.v (140) [ALGB] (1) protected Real Valve.state_b.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (141) [ALGB] (1) Real motor.la.v (142) [ALGB] (1) Real motor.ra.v (143) [ALGB] (1) Real pump.rho = pump.rho (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (144) [ALGB] (1) final Real motor.thermalAmbient.Q_flowFriction = motor.thermalAmbient.Q_flowFriction (145) [ALGB] (1) stream Real[1] Sink.ports.h_outflow (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (146) [DER-] (1) flow Real $DER.motor.airGapDC.pin_an.i (147) [ALGB] (1) final output Real motor.powerBalance.lossPowerArmature = -motor.ra.heatPort.Q_flow (148) [ALGB] (1) final output Real motor.powerBalance.powerMechanical = motor.wMechanical * motor.tauShaft (149) [ALGB] (1) protected Real Valve.state_b.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (150) [ALGB] (1) final output Real motor.powerBalance.powerInertiaRotor = motor.inertiaRotor.a * motor.inertiaRotor.J * motor.inertiaRotor.w (151) [ALGB] (1) Real pump.port_a.p (start = pump.p_a_start, min = 611.657, max = 1e8, nominal = 1e6) (152) [ALGB] (1) Real motor.inertiaRotor.a (153) [ALGB] (1) Real motor.wMechanical = der(motor.phiMechanical) (start = 0.0) (154) [DISC] (1) Integer Source.medium.phase (fixed = false, start = 1, min = 0, max = 2) (155) [DISC] (1) Integer Source.medium.state.phase (min = 0, max = 2) (156) [ALGB] (1) flow Real motor.ra.heatPort.Q_flow = -(-motor.ra.heatPort.Q_flow) (157) [ALGB] (1) Real pump.V_flow (158) [DER-] (1) Real $DER.housing.T (159) [ALGB] (1) Real pump.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * pump.medium.p_bar) (160) [ALGB] (1) Real[1] Sink.ports.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (161) [ALGB] (1) Real motor.va = stepVoltage.p.v - 0.0 (162) [ALGB] (1) flow Real[1] Source.ports.m_flow (min = {-1e60}, max = {1e60}) (163) [ALGB] (1) flow Real[1] pump.heatTransfer.heatPorts.Q_flow (164) [DER-] (1) parameter Real $DER.motor.fixed.phi0 (165) [ALGB] (1) Real Source.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (166) [DISC] (1) final input Integer pump.monitoring.state.phase = pump.medium.state.phase (min = 0, max = 2) (167) [ALGB] (1) protected Real Valve.state_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (168) [ALGB] (1) final Real motor.thermalAmbient.Q_flowStrayLoad = motor.thermalAmbient.Q_flowStrayLoad (169) [ALGB] (1) stream Real[1] Source.ports.h_outflow (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (170) [ALGB] (1) Real Source.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - Source.medium.T_degC)) (171) [ALGB] (1) protected Real Valve.state_a.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (172) [ALGB] (1) final output Real motor.powerBalance.powerInertiaStator = motor.inertiaStator.a * motor.inertiaStator.J * motor.inertiaStator.w (173) [ALGB] (1) protected Real Valve.state_a.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (174) [ALGB] (1) Real Source.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (175) [ALGB] (1) flow Real Valve.port_b.m_flow (min = -1e5, max = 1e60) (176) [ALGB] (1) Real Sink.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) System Equations (167/175) **************************** (1) [SCAL] (1) motor.strayLoad.heatPort.Q_flow + motor.thermalAmbient.Q_flowStrayLoad = 0.0 ($RES_SIM_206) (2) [SCAL] (1) motor.inertiaRotor.J * motor.inertiaRotor.a = motor.tauElectrical + motor.inertiaRotor.flange_b.tau ($RES_SIM_81) (3) [SCAL] (1) motor.inertiaRotor.a = $DER.motor.inertiaRotor.w ($RES_SIM_82) (4) [SCAL] (1) motor.core.heatPort.Q_flow + motor.thermalAmbient.Q_flowCore = 0.0 ($RES_SIM_208) (5) [SCAL] (1) motor.inertiaRotor.w = $DER.pump.phi ($RES_SIM_83) (6) [SCAL] (1) motor.brush.heatPort.Q_flow + motor.thermalAmbient.Q_flowBrush = 0.0 ($RES_SIM_209) (7) [SCAL] (1) pump.medium.phase = pump.medium.state.phase ($RES_SIM_124) (8) [SCAL] (1) pump.rho = pump.medium.state.d ($RES_SIM_125) (9) [SCAL] (1) -((-273.15) - pump.medium.T_degC) = pump.medium.state.T ($RES_SIM_126) (10) [SCAL] (1) 99999.99999999999 * pump.medium.p_bar = pump.medium.state.p ($RES_SIM_127) (11) [SCAL] (1) Valve.dp = 99999.99999999999 * pump.medium.p_bar - Valve.port_b.p ($RES_SIM_88) (12) [SCAL] (1) Valve.port_b.h_outflow = pump.medium.state.h ($RES_SIM_128) (13) [SCAL] (1) $SEV_10 = $FUN_3 > 0.0 ($RES_EVT_370) (14) [SCAL] (1) $SEV_13 = (Valve.port_b.h_outflow < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pump.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(pump.medium.sat.psat)) or Valve.port_b.h_outflow > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pump.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(pump.medium.sat.psat))) or 99999.99999999999 * pump.medium.p_bar > 2.2064e7 ($RES_EVT_373) (15) [SCAL] (1) $SEV_16 = (Sink.medium.h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(Sink.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(Sink.medium.sat.psat)) or Sink.medium.h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(Sink.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(Sink.medium.sat.psat))) or Sink.p > 2.2064e7 ($RES_EVT_376) (16) [SCAL] (1) $SEV_19 = (Source.medium.h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(Source.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(Source.medium.sat.psat)) or Source.medium.h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(Source.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(Source.medium.sat.psat))) or Source.p > 2.2064e7 ($RES_EVT_379) (17) [SCAL] (1) motor.ie.v = -motor.airGapDC.pin_ep.v ($RES_SIM_13) (18) [SCAL] (1) motor.ra.heatPort.Q_flow + motor.thermalAmbient.Q_flowArmature = 0.0 ($RES_SIM_211) (19) [SCAL] (1) -(motor.airGapDC.pin_an.i + motor.ia) = 0.0 ($RES_SIM_212) (20) [SCAL] (1) (motor.ia + ground.p.i) - motor.brush.i = 0.0 ($RES_SIM_213) (21) [SCAL] (1) pump.medium.u = Valve.port_b.h_outflow - (99999.99999999999 * pump.medium.p_bar) / pump.rho ($RES_SIM_130) (22) [SCAL] (1) pump.medium.sat.psat = 99999.99999999999 * pump.medium.p_bar ($RES_SIM_131) (23) [SCAL] (1) motor.friction.heatPort.Q_flow + motor.thermalAmbient.Q_flowFriction = 0.0 ($RES_SIM_216) (24) [SCAL] (1) motor.tauElectrical = -motor.airGapDC.psi_e * motor.airGapDC.turnsRatio * motor.airGapDC.pin_an.i ($RES_SIM_18) (25) [SCAL] (1) Valve.port_a.h_outflow = Sink.ports[1].h_outflow ($RES_SIM_92) (26) [SCAL] (1) motor.airGapDC.vai = motor.airGapDC.psi_e * motor.airGapDC.turnsRatio * motor.core.w ($RES_SIM_19) (27) [SCAL] (1) pump.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(99999.99999999999 * pump.medium.p_bar) ($RES_SIM_132) (28) [SCAL] (1) Valve.port_b.m_flow + Sink.ports[1].m_flow = 0.0 ($RES_SIM_218) (29) [SCAL] (1) -Valve.port_b.m_flow = homotopy(Valve.Av * Valve.relativeFlowCoefficient * smooth(2, if $SEV_2 then (if $SEV_3 then sqrt(Valve.state_a.d) else 0.0) * sqrt(Valve.dp) else if $SEV_4 then -(if $SEV_5 then sqrt(Valve.state_b.d) else 0.0) * sqrt(abs(Valve.dp)) else if $SEV_6 then Modelica.Fluid.Utilities.regRoot2.regRoot2_utility(Valve.dp, Valve.dp_small, Valve.state_a.d, Valve.state_b.d, false, 1.0) else -Modelica.Fluid.Utilities.regRoot2.regRoot2_utility(-Valve.dp, Valve.dp_small, Valve.state_b.d, Valve.state_a.d, false, 1.0)), (Valve.dp * Valve.m_flow_nominal * Valve.relativeFlowCoefficient) / Valve.dp_nominal) ($RES_SIM_93) (30) [SCAL] (1) -((-273.15) - pump.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_b.h_outflow, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_b.h_outflow, pump.medium.phase, 0)) ($RES_SIM_133) (31) [SCAL] (1) pump.rho = Modelica.Media.Water.IF97_Utilities.rho_props_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_b.h_outflow, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_b.h_outflow, pump.medium.phase, 0)) ($RES_SIM_134) (32) [SCAL] (1) Valve.minLimiter.y = smooth(0, noEvent(if $SEV_7 then Valve.minLimiter.uMin else Valve.relativeFlowCoefficient)) ($RES_SIM_95) (33) [SCAL] (1) pump.medium.phase = if $SEV_13 then 1 else 2 ($RES_SIM_135) (34) [SCAL] (1) Valve.relativeFlowCoefficient = valveOpening.offset + (if $TEV_1 then 0.0 else valveOpening.height) ($RES_SIM_96) (35) [SCAL] (1) Sink.ports[1].p = Sink.p ($RES_SIM_137) (36) [SCAL] (1) 0.0 = pump.Qb_flow + pump.Hb_flow + pump.Wb_flow ($RES_SIM_98) (37) [SCAL] (1) Sink.ports[1].h_outflow = Sink.medium.h ($RES_SIM_138) (38) [SCAL] (1) pump.U = pump.m * pump.medium.u ($RES_SIM_99) (39) [SCAL] (1) Sink.medium.h = Modelica.Media.Water.IF97_Utilities.h_pT(Sink.p, Sink.T, 0) ($RES_SIM_139) (40) [SCAL] (1) $SEV_20 = Valve.port_b.m_flow > Valve.m_flow_small ($RES_EVT_380) (41) [SCAL] (1) $SEV_21 = Valve.port_b.m_flow < (-Valve.m_flow_small) ($RES_EVT_381) (42) [SCAL] (1) $SEV_22 = Valve.m_flow_small > 0.0 ($RES_EVT_382) (43) [SCAL] (1) $SEV_23 = (-Valve.port_b.m_flow) > Valve.m_flow_small ($RES_EVT_383) (44) [SCAL] (1) $SEV_24 = (-Valve.port_b.m_flow) < (-Valve.m_flow_small) ($RES_EVT_384) (45) [SCAL] (1) motor.core.w = $DER.pump.phi - $DER.motor.fixed.phi0 ($RES_SIM_20) (46) [SCAL] (1) motor.airGapDC.vei = $DER.motor.airGapDC.psi_e ($RES_SIM_21) (47) [SCAL] (1) pump.m_flow + Source.ports[1].m_flow = 0.0 ($RES_SIM_222) (48) [SCAL] (1) motor.airGapDC.vei = motor.airGapDC.pin_ep.v ($RES_SIM_24) (49) [SCAL] (1) motor.airGapDC.vai = motor.airGapDC.pin_ap.v - motor.airGapDC.pin_an.v ($RES_SIM_27) (50) [SCAL] (1) motor.airGapDC.psi_e = motor.airGapDC.Le * motor.ie.I ($RES_SIM_28) (51) [SCAL] (1) pump.port_a.p = Source.ports[1].p ($RES_SIM_229) (52) [SCAL] (1) Sink.medium.phase = Sink.medium.state.phase ($RES_SIM_149) (53) [SCAL] (1) Valve.port_b.p = Sink.ports[1].p ($RES_SIM_231) (54) [SCAL] (1) motor.tauShaft + motor.inertiaRotor.flange_b.tau = 0.0 ($RES_SIM_232) (55) [ARRY] (1) pump.heatTransfer.Ts = {pump.heatTransfer.states.h} ($RES_BND_285) (56) [SCAL] (1) Sink.medium.d = Sink.medium.state.d ($RES_SIM_150) (57) [SCAL] (1) -((-273.15) - Sink.medium.T_degC) = Sink.medium.state.T ($RES_SIM_151) (58) [SCAL] (1) pump.dp_pump = 99999.99999999999 * pump.medium.p_bar - pump.port_a.p ($RES_BND_287) (59) [SCAL] (1) pump.head = pump.dp_pump / (pump.g * pump.rho) ($RES_BND_288) (60) [SCAL] (1) 0.0 = stepVoltage.p.v - motor.strayLoad.n.v ($RES_SIM_39) (61) [SCAL] (1) Sink.medium.h = Sink.medium.state.h ($RES_SIM_153) (62) [SCAL] (1) Sink.medium.u = Sink.medium.h - Sink.p / Sink.medium.d ($RES_SIM_155) (63) [SCAL] (1) Sink.medium.sat.psat = Sink.p ($RES_SIM_156) (64) [SCAL] (1) -((-273.15) - Sink.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(Sink.p, Sink.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(Sink.p, Sink.medium.h, Sink.medium.phase, 0)) ($RES_SIM_158) (65) [SCAL] (1) Sink.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(Sink.p, Sink.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(Sink.p, Sink.medium.h, Sink.medium.phase, 0)) ($RES_SIM_159) (66) [SCAL] (1) $FUN_1 = ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.pump.flowCharacteristic((pump.N_nominal * pump.V_flow_single) / pump.N, {0.0, 0.001, 0.0015}, {100.0, 50.0, 0.0}) ($RES_$AUX_334) (67) [SCAL] (1) $FUN_2 = ModelicaTest.Fluid.TestComponents.Machines.TestWaterPumpDCMotorHeatTransfer.pump.flowCharacteristic(pump.V_flow_single_init, {0.0, 0.001, 0.0015}, {100.0, 50.0, 0.0}) ($RES_$AUX_333) (68) [SCAL] (1) $FUN_3 = abs(pump.V_flow_single_init) ($RES_$AUX_332) (69) [SCAL] (1) $FUN_4 = abs(motor.core.w) ($RES_$AUX_331) (70) [SCAL] (1) pump.m_flow_single = pump.m_flow / pump.nParallel ($RES_BND_290) (71) [SCAL] (1) pump.Wb_flow = pump.W_single * pump.nParallel ($RES_BND_291) (72) [SCAL] (1) motor.strayLoad.w = $DER.motor.strayLoad.phi ($RES_SIM_42) (73) [SCAL] (1) Valve.V_flow = -Valve.port_b.m_flow / smooth(1, if $SEV_23 then Valve.state_a.d else if $SEV_24 then Valve.state_b.d else if $SEV_22 then 0.5 * (Valve.state_a.d + Valve.state_b.d) - 0.25 * (Valve.state_b.d - Valve.state_a.d) * ((-3.0) + (Valve.port_b.m_flow / (-Valve.m_flow_small)) ^ 2.0) * (Valve.port_b.m_flow / Valve.m_flow_small) else 0.5 * (Valve.state_a.d + Valve.state_b.d)) ($RES_BND_292) (74) [SCAL] (1) motor.strayLoad.phi = pump.phi - motor.fixed.phi0 ($RES_SIM_43) (75) [SCAL] (1) Valve.port_a_T = smooth(1, if $SEV_23 then Valve.state_a.T else if $SEV_24 then Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_a.h_outflow, 0, 0) else if $SEV_22 then 0.5 * (Valve.state_a.T + Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_a.h_outflow, 0, 0)) - 0.25 * (Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_a.h_outflow, 0, 0) - Valve.state_a.T) * ((-3.0) + (Valve.port_b.m_flow / (-Valve.m_flow_small)) ^ 2.0) * (Valve.port_b.m_flow / Valve.m_flow_small) else 0.5 * (Valve.state_a.T + Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_a.h_outflow, 0, 0))) ($RES_BND_293) (76) [SCAL] (1) -motor.strayLoad.heatPort.Q_flow = 0.0 ($RES_SIM_44) (77) [SCAL] (1) Valve.port_b_T = smooth(1, if $SEV_20 then Valve.state_b.T else if $SEV_21 then Modelica.Media.Water.IF97_Utilities.T_ph(Valve.port_b.p, Valve.port_b.h_outflow, 0, 0) else if $SEV_22 then 0.25 * (Modelica.Media.Water.IF97_Utilities.T_ph(Valve.port_b.p, Valve.port_b.h_outflow, 0, 0) - Valve.state_b.T) * ((-3.0) + (Valve.port_b.m_flow / Valve.m_flow_small) ^ 2.0) * (Valve.port_b.m_flow / Valve.m_flow_small) + 0.5 * (Valve.state_b.T + Modelica.Media.Water.IF97_Utilities.T_ph(Valve.port_b.p, Valve.port_b.h_outflow, 0, 0)) else 0.5 * (Valve.state_b.T + Modelica.Media.Water.IF97_Utilities.T_ph(Valve.port_b.p, Valve.port_b.h_outflow, 0, 0))) ($RES_BND_294) (78) [SCAL] (1) motor.phiMechanical = pump.phi - motor.fixed.phi0 ($RES_BND_296) (79) [SCAL] (1) Sink.medium.phase = if $SEV_16 then 1 else 2 ($RES_SIM_160) (80) [SCAL] (1) motor.wMechanical = $DER.motor.phiMechanical ($RES_BND_297) (81) [SCAL] (1) motor.core.v = motor.ra.n.v - motor.airGapDC.pin_an.v ($RES_SIM_49) (82) [SCAL] (1) Source.ports[1].p = Source.p ($RES_SIM_162) (83) [SCAL] (1) Source.ports[1].h_outflow = Source.medium.h ($RES_SIM_163) (84) [SCAL] (1) Source.medium.h = Modelica.Media.Water.IF97_Utilities.h_pT(Source.p, Source.T, 0) ($RES_SIM_164) (85) [SCAL] (1) motor.powerBalance.lossPowerPermanentMagnet = 0.0 ($RES_BND_301) (86) [SCAL] (1) motor.powerBalance.lossPowerBrush = -motor.brush.heatPort.Q_flow ($RES_BND_302) (87) [SCAL] (1) motor.powerBalance.lossPowerFriction = -motor.friction.heatPort.Q_flow ($RES_BND_303) (88) [SCAL] (1) motor.powerBalance.lossPowerStrayLoad = -motor.strayLoad.heatPort.Q_flow ($RES_BND_304) (89) [SCAL] (1) motor.powerBalance.lossPowerCore = -motor.core.heatPort.Q_flow ($RES_BND_305) (90) [SCAL] (1) motor.powerBalance.lossPowerArmature = -motor.ra.heatPort.Q_flow ($RES_BND_306) (91) [SCAL] (1) motor.powerBalance.lossPowerTotal = motor.powerBalance.lossPowerBrush + motor.powerBalance.lossPowerStrayLoad + motor.powerBalance.lossPowerArmature + motor.powerBalance.lossPowerCore + motor.powerBalance.lossPowerFriction + motor.powerBalance.lossPowerPermanentMagnet ($RES_BND_307) (92) [SCAL] (1) motor.powerBalance.powerInertiaRotor = motor.inertiaRotor.a * motor.inertiaRotor.J * motor.inertiaRotor.w ($RES_BND_308) (93) [SCAL] (1) motor.powerBalance.powerInertiaStator = motor.inertiaStator.a * motor.inertiaStator.J * motor.inertiaStator.w ($RES_BND_309) (94) [SCAL] (1) -motor.core.heatPort.Q_flow = 0.0 ($RES_SIM_50) (95) [SCAL] (1) stepVoltage.v = stepVoltage.signalSource.offset + (if $TEV_0 then 0.0 else stepVoltage.signalSource.height) ($RES_SIM_9) (96) [SCAL] (1) Valve.state_a.h = Valve.port_b.h_outflow ($RES_SIM_337) (97) [SCAL] (1) 0.0 = motor.airGapDC.pin_an.v ($RES_SIM_55) (98) [SCAL] (1) Valve.state_a.d = Modelica.Media.Water.IF97_Utilities.rho_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_b.h_outflow, 0, 0) ($RES_SIM_338) (99) [SCAL] (1) stepVoltage.v = stepVoltage.p.v ($RES_SIM_7) (100) [SCAL] (1) -motor.brush.heatPort.Q_flow = 0.0 ($RES_SIM_56) (101) [SCAL] (1) Valve.state_a.T = Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * pump.medium.p_bar, Valve.port_b.h_outflow, 0, 0) ($RES_SIM_339) (102) [SCAL] (1) housing.der_T = $DER.housing.T ($RES_SIM_2) (103) [SCAL] (1) Source.medium.phase = Source.medium.state.phase ($RES_SIM_174) (104) [SCAL] (1) housing.C * $DER.housing.T = -pump.heatPort.Q_flow ($RES_SIM_1) (105) [SCAL] (1) Source.medium.d = Source.medium.state.d ($RES_SIM_175) (106) [SCAL] (1) -((-273.15) - Source.medium.T_degC) = Source.medium.state.T ($RES_SIM_176) (107) [SCAL] (1) Source.medium.h = Source.medium.state.h ($RES_SIM_178) (108) [SCAL] (1) motor.powerBalance.powerMechanical = motor.wMechanical * motor.tauShaft ($RES_BND_310) (109) [SCAL] (1) motor.powerBalance.powerArmature = motor.va * motor.ia ($RES_BND_311) (110) [SCAL] (1) motor.va = stepVoltage.p.v ($RES_BND_312) (111) [SCAL] (1) Valve.state_a.p = 99999.99999999999 * pump.medium.p_bar ($RES_SIM_340) (112) [SCAL] (1) motor.core.wLimit = noEvent(max(noEvent($FUN_4), motor.core.coreParameters.wMin)) ($RES_BND_319) (113) [SCAL] (1) Valve.state_b.h = Sink.ports[1].h_outflow ($RES_SIM_342) (114) [SCAL] (1) motor.la.v = motor.ra.n.v - motor.airGapDC.pin_ap.v ($RES_SIM_60) (115) [SCAL] (1) pump.m = 0.0 ($RES_SIM_100) (116) [SCAL] (1) Valve.state_b.d = Modelica.Media.Water.IF97_Utilities.rho_ph(Valve.port_b.p, Sink.ports[1].h_outflow, 0, 0) ($RES_SIM_343) (117) [SCAL] (1) motor.la.v = motor.la.L * (-$DER.motor.airGapDC.pin_an.i) ($RES_SIM_61) (118) [SCAL] (1) 0.0 = pump.m_flow + Valve.port_b.m_flow ($RES_SIM_101) (119) [SCAL] (1) Valve.state_b.T = Modelica.Media.Water.IF97_Utilities.T_ph(Valve.port_b.p, Sink.ports[1].h_outflow, 0, 0) ($RES_SIM_344) (120) [SCAL] (1) Valve.state_b.p = Valve.port_b.p ($RES_SIM_345) (121) [SCAL] (1) motor.ra.v = motor.strayLoad.n.v - motor.ra.n.v ($RES_SIM_64) (122) [SCAL] (1) pump.monitoring.state_in.h = Source.ports[1].h_outflow ($RES_SIM_347) (123) [SCAL] (1) -motor.ra.heatPort.Q_flow = motor.ra.v * motor.ia ($RES_SIM_65) (124) [SCAL] (1) pump.Hb_flow = smooth(0, pump.m_flow * (if $SEV_8 then Source.ports[1].h_outflow else Valve.port_b.h_outflow)) + smooth(0, Valve.port_b.m_flow * (if $SEV_9 then Valve.port_a.h_outflow else Valve.port_b.h_outflow)) ($RES_SIM_105) (125) [SCAL] (1) pump.monitoring.state_in.d = Modelica.Media.Water.IF97_Utilities.rho_ph(pump.port_a.p, Source.ports[1].h_outflow, 0, 0) ($RES_SIM_348) (126) [SCAL] (1) motor.ra.v = motor.ra.R_actual * motor.ia ($RES_SIM_66) (127) [SCAL] (1) pump.Qb_flow = pump.heatTransfer.Q_flows[1] ($RES_SIM_106) (128) [SCAL] (1) pump.monitoring.state_in.T = Modelica.Media.Water.IF97_Utilities.T_ph(pump.port_a.p, Source.ports[1].h_outflow, 0, 0) ($RES_SIM_349) (129) [SCAL] (1) motor.ra.R_actual = motor.ra.R * (1.0 + motor.ra.alpha * (motor.thermalAmbient.constTa.k - motor.ra.T_ref)) ($RES_SIM_67) (130) [SCAL] (1) Source.medium.u = Source.medium.h - Source.p / Source.medium.d ($RES_SIM_180) (131) [SCAL] (1) Source.medium.sat.psat = Source.p ($RES_SIM_181) (132) [SCAL] (1) pump.eta = (pump.V_flow_single * pump.dp_pump) / pump.W_single ($RES_SIM_108) (133) [SCAL] (1) pump.W_single = homotopy((pump.rho / pump.rho_nominal) * (pump.N / pump.N_nominal) ^ 3.0 * ((550.0 + 1.333333333333333e8 * ((pump.N_nominal * pump.V_flow_single) / pump.N) ^ 2.0) - (33333.33333333329 * pump.V_flow_single * pump.N_nominal) / pump.N), ((pump.V_flow_single * (pump.N / pump.N_nominal)) / pump.V_flow_single_init) * ((550.0 + 1.333333333333333e8 * pump.V_flow_single_init ^ 2.0) - 33333.33333333329 * pump.V_flow_single_init)) ($RES_SIM_109) (134) [SCAL] (1) -((-273.15) - Source.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(Source.p, Source.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(Source.p, Source.medium.h, Source.medium.phase, 0)) ($RES_SIM_183) (135) [SCAL] (1) Source.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(Source.p, Source.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(Source.p, Source.medium.h, Source.medium.phase, 0)) ($RES_SIM_184) (136) [SCAL] (1) Source.medium.phase = if $SEV_19 then 1 else 2 ($RES_SIM_185) (137) [SCAL] (1) motor.airGapDC.pin_an.i + motor.brush.i = 0.0 ($RES_SIM_188) (138) [SCAL] (1) $TEV_0 = time < stepVoltage.signalSource.startTime ($RES_EVT_358) (139) [SCAL] (1) $TEV_1 = time < valveOpening.startTime ($RES_EVT_359) (140) [SCAL] (1) motor.thermalAmbient.Q_flowTotal = motor.thermalAmbient.Q_flowBrush + motor.thermalAmbient.Q_flowStrayLoad + motor.thermalAmbient.Q_flowArmature + motor.thermalAmbient.Q_flowCore + motor.thermalAmbient.Q_flowFriction ($RES_BND_327) (141) [ARRY] (5) pump.heatTransfer.states = {pump.medium.state} ($RES_BND_328) (142) [SCAL] (1) pump.monitoring.state_in.p = pump.port_a.p ($RES_SIM_350) (143) [SCAL] (1) motor.friction.w = $DER.motor.friction.phi ($RES_SIM_71) (144) [SCAL] (1) pump.head = homotopy((pump.N / pump.N_nominal) ^ 2.0 * $FUN_1, (pump.N / pump.N_nominal) * ($FUN_2 + (pump.V_flow_single - pump.V_flow_single_init) * noEvent(if $SEV_10 then (10.0 * pump.delta_head_init) / pump.V_flow_single_init else 0.0))) ($RES_SIM_111) (145) [SCAL] (1) motor.friction.phi = pump.phi - motor.fixed.phi0 ($RES_SIM_72) (146) [SCAL] (1) pump.V_flow_single = pump.V_flow / pump.nParallel ($RES_SIM_112) (147) [SCAL] (1) -motor.friction.heatPort.Q_flow = 0.0 ($RES_SIM_73) (148) [SCAL] (1) pump.V_flow = homotopy(pump.m_flow / pump.rho, pump.m_flow / pump.rho_nominal) ($RES_SIM_113) (149) [SCAL] (1) pump.W_single = (0.10471975511965977 * pump.N) * motor.tauShaft ($RES_SIM_114) (150) [SCAL] (1) motor.inertiaStator.J * motor.inertiaStator.a = motor.inertiaStator.flange_a.tau ($RES_SIM_76) (151) [SCAL] (1) 0.10471975511965977 * pump.N = $DER.pump.phi ($RES_SIM_116) (152) [SCAL] (1) pump.heatTransfer.heatPorts[1].Q_flow - pump.heatPort.Q_flow = 0.0 ($RES_SIM_275) (153) [SCAL] (1) motor.inertiaStator.a = $DER.motor.inertiaStator.w ($RES_SIM_77) (154) [SCAL] (1) pump.heatTransfer.heatPorts[1].T = housing.T ($RES_SIM_276) (155) [SCAL] (1) motor.inertiaStator.w = $DER.motor.fixed.phi0 ($RES_SIM_78) (156) [SCAL] (1) motor.inertiaStator.flange_a.tau + motor.fixed.flange.tau + motor.tauElectrical = 0.0 ($RES_SIM_191) (157) [ARRY] (1) pump.heatTransfer.Q_flows = pump.heatTransfer.heatPorts.Q_flow + {0.0} ($RES_SIM_118) (158) [ARRY] (1) pump.heatTransfer.Ts = pump.heatTransfer.heatPorts.T ($RES_SIM_119) (159) [SCAL] (1) $SEV_2 = Valve.dp >= Valve.dp_small ($RES_EVT_362) (160) [SCAL] (1) $SEV_3 = Valve.state_a.d > 0.0 ($RES_EVT_363) (161) [SCAL] (1) $SEV_4 = Valve.dp <= (-Valve.dp_small) ($RES_EVT_364) (162) [SCAL] (1) $SEV_5 = Valve.state_b.d > 0.0 ($RES_EVT_365) (163) [RECD] (5) pump.monitoring.state = pump.medium.state ($RES_BND_330) (164) [SCAL] (1) $SEV_6 = Valve.state_a.d >= Valve.state_b.d ($RES_EVT_366) (165) [SCAL] (1) $SEV_7 = Valve.relativeFlowCoefficient < Valve.minLimiter.uMin ($RES_EVT_367) (166) [SCAL] (1) $SEV_8 = pump.m_flow > 0.0 ($RES_EVT_368) (167) [SCAL] (1) $SEV_9 = Valve.port_b.m_flow > 0.0 ($RES_EVT_369)