Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph") translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001141/0.001141, allocations: 103.6 kB / 16.42 MB, free: 6.523 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001084/0.001084, allocations: 188.3 kB / 17.35 MB, free: 5.73 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.268/1.268, allocations: 205.1 MB / 223.2 MB, free: 12.22 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo): time 0.1734/0.1734, allocations: 39.96 MB / 310.5 MB, free: 4.012 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.056e-05/2.057e-05, allocations: 9.594 kB / 436.4 MB, free: 11.75 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph): time 0.03256/0.03259, allocations: 39.04 MB / 475.5 MB, free: 4.566 MB / 350.1 MB Notification: Performance of NFInst.instExpressions: time 0.02147/0.0541, allocations: 20.15 MB / 495.6 MB, free: 352 kB / 366.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.000616/0.05475, allocations: 19.88 kB / 495.6 MB, free: 332 kB / 366.1 MB Notification: Performance of NFTyping.typeComponents: time 0.001174/0.05593, allocations: 437.5 kB / 496.1 MB, free: 15.89 MB / 382.1 MB Notification: Performance of NFTyping.typeBindings: time 0.0146/0.07054, allocations: 5.107 MB / 0.4894 GB, free: 10.79 MB / 382.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.005666/0.07622, allocations: 2.565 MB / 0.4919 GB, free: 8.211 MB / 382.1 MB Notification: Performance of NFFlatten.flatten: time 0.002042/0.07827, allocations: 2.093 MB / 0.494 GB, free: 6.113 MB / 382.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0005815/0.07887, allocations: 489.5 kB / 0.4944 GB, free: 5.633 MB / 382.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.008085/0.08696, allocations: 4.269 MB / 0.4986 GB, free: 1.309 MB / 382.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.009821/0.0968, allocations: 5.436 MB / 0.5039 GB, free: 11.79 MB / 398.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0001153/0.09692, allocations: 67.94 kB / 0.504 GB, free: 11.72 MB / 398.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.01014/0.1071, allocations: 6.88 MB / 0.5107 GB, free: 4.836 MB / 398.1 MB Notification: Performance of combineBinaries: time 0.001116/0.1082, allocations: 1.467 MB / 0.5121 GB, free: 3.355 MB / 398.1 MB Notification: Performance of replaceArrayConstructors: time 0.0005732/0.1088, allocations: 0.942 MB / 0.5131 GB, free: 2.402 MB / 398.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0001877/0.109, allocations: 131.6 kB / 0.5132 GB, free: 2.273 MB / 398.1 MB Notification: Performance of FrontEnd: time 0.0001403/0.1091, allocations: 19.94 kB / 0.5132 GB, free: 2.254 MB / 398.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 160 (122) * Number of variables: 170 (131) Notification: Performance of Bindings: time 0.1908/0.2999, allocations: 4.24 MB / 0.5173 GB, free: 25.47 MB / 398.1 MB Notification: Performance of FunctionAlias: time 0.0002132/0.3001, allocations: 189.3 kB / 0.5175 GB, free: 25.47 MB / 398.1 MB Notification: Performance of Early Inline: time 0.002213/0.3023, allocations: 2.229 MB / 0.5197 GB, free: 25.34 MB / 398.1 MB Notification: Performance of simplify1: time 0.0001649/0.3025, allocations: 133.6 kB / 0.5198 GB, free: 25.34 MB / 398.1 MB Notification: Performance of Alias: time 0.001749/0.3043, allocations: 1.873 MB / 0.5217 GB, free: 24.8 MB / 398.1 MB Notification: Performance of simplify2: time 0.0001152/0.3044, allocations: 125.9 kB / 0.5218 GB, free: 24.8 MB / 398.1 MB Notification: Performance of Events: time 0.0004122/0.3048, allocations: 436.2 kB / 0.5222 GB, free: 24.7 MB / 398.1 MB Notification: Performance of Detect States: time 0.0004422/0.3053, allocations: 0.621 MB / 0.5228 GB, free: 24.63 MB / 398.1 MB Notification: Performance of Partitioning: time 0.0006998/0.306, allocations: 0.9817 MB / 0.5238 GB, free: 24.23 MB / 398.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency volume.heatTransfer.states.p could not be divided by the body size 5 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (5) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_154) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (112/148) **************************** (1) [ALGB] (1) Real ambient.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (2) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.T (start = {500.0 for $i1 in 1:2}, min = {273.15 for $i1 in 1:2}, max = {2273.15 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (3) [ALGB] (1) Real fixedMassFlowRate.medium.h (StateSelect = default) (4) [ALGB] (1) Real fixedMassFlowRate.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (5) [ALGB] (1) Real volume.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - volume.medium.T_degC)) (6) [ALGB] (1) Real[1] shortPipe.flowModel.Ib_flows (7) [ALGB] (1) Real fixedMassFlowRate.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (8) [ALGB] (1) Real fixedMassFlowRate.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (9) [ALGB] (1) Real volume.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (10) [ALGB] (1) Real ambient.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * ambient.medium.p_bar) (11) [ALGB] (1) Real[1] volume.heatTransfer.Q_flows (12) [ALGB] (2) Real[2] volume.portInDensities (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (13) [ALGB] (1) Real[1] shortPipe.flowModel.Is (14) [ALGB] (2) Real[2] shortPipe.flowModel.mus = {shortPipe.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (15) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.T = {volume.medium.state.T} (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (16) [ALGB] (2) protected Real[2] volume.portsData_height (17) [ALGB] (2) Real[2] shortPipe.flowModel.rhos = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph.shortPipe.flowModel.Medium.density(shortPipe.flowModel.states[$i1]) for $i1 in 1:2} (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (18) [ALGB] (1) Real ambient.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - ambient.medium.T_degC)) (19) [ALGB] (1) stream Real[1] fixedMassFlowRate.ports.h_outflow (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (20) [DISC] (1) final input Integer[1, 1] volume.heatTransfer.states.phase = {volume.medium.state.phase} (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (21) [ALGB] (1) Real volume.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (22) [DISC] (2) Boolean[2] $SEV_11[$i1] (23) [ALGB] (1) Real fixedMassFlowRate.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (24) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_fg (25) [DISC] (1) Integer volume.medium.phase (fixed = false, start = 1, min = 0, max = 2) (26) [ALGB] (2) Real[2] volume.portVelocities (27) [ALGB] (1) stream Real shortPipe.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (28) [ALGB] (1) Real shortPipe.port_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (29) [ALGB] (1) Real[1] volume.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (30) [ALGB] (2) Real[2] volume.vessel_ps_static (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (31) [ALGB] (1) Real[1] shortPipe.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (32) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.d = {volume.medium.state.d} (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (33) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.h = {volume.medium.state.h} (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (34) [ALGB] (1) protected Real ambient.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (35) [ALGB] (1) Real[1] shortPipe.flowModel.dps_fg (start = {shortPipe.flowModel.p_a_start - shortPipe.flowModel.p_b_start for $i1 in 1:1}) (36) [ALGB] (1) Real[1] shortPipe.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (37) [DISC] (1) Boolean $SEV_20 (38) [ALGB] (1) Real volume.mb_flow (39) [DISC] (2) protected Boolean[2] volume.regularFlow (start = {true for $i1 in 1:2}) (40) [DISC] (1) Integer ambient.medium.phase (fixed = false, start = 1, min = 0, max = 2) (41) [ALGB] (1) stream Real[1] ambient.ports.h_outflow (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (42) [ALGB] (1) Real $FUN_3 (43) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.p = {volume.medium.state.p} (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (44) [ALGB] (1) protected Real ambient.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (45) [ALGB] (1) Real $FUN_2 (46) [ALGB] (1) final Real[1] shortPipe.flowModel.pathLengths = {shortPipe.length} (47) [DISC] (2) Boolean[2] $SEV_9[$i1] (48) [ALGB] (1) flow Real[1] fixedMassFlowRate.ports.m_flow (min = {-1e60}, max = {1e60}) (49) [ALGB] (2) Real[2] volume.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (50) [ALGB] (1) Real[1] fixedMassFlowRate.ports.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (51) [DISC] (1) Integer fixedMassFlowRate.medium.state.phase (min = 0, max = 2) (52) [DISC] (2) Boolean[2] $SEV_10[$i1] (53) [DISC] (1) Boolean $SEV_18 (54) [ALGB] (2) Real[2] volume.ports_E_flow (55) [DISC] (1) Boolean $SEV_15 (56) [ALGB] (1) stream Real shortPipe.port_b.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (57) [DISC] (1) Boolean $SEV_14 (58) [DISC] (2) Boolean[2] $SEV_13[$i1] (59) [ALGB] (1) final Real[1] shortPipe.flowModel.dheights = {shortPipe.height_ab} (60) [ALGB] (2) Real[2] volume.s (start = {volume.fluidLevel_max for $i1 in 1:2}) (61) [ALGB] (1) Real ambient.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (62) [ALGB] (1) Real fixedMassFlowRate.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * fixedMassFlowRate.medium.p_bar) (63) [ALGB] (1) Real volume.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (64) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_p (65) [ALGB] (1) Real volume.Hb_flow (66) [ALGB] (2) flow Real[2] volume.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (67) [DER-] (1) Real $DER.volume.U (68) [DISC] (1) Integer ambient.medium.state.phase (min = 0, max = 2) (69) [ALGB] (1) Real volume.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (70) [ALGB] (2) Real[2] volume.ports.p (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (71) [DISC] (4) input Integer[2, 2] shortPipe.flowModel.states.phase (min = {0 for $i1 in 1:2}, max = {2 for $i1 in 1:2}) (72) [DISC] (1) Boolean $SEV_8 (73) [ALGB] (2) final Real[2] shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} (74) [ALGB] (1) Real volume.medium.h (fixed = true, start = volume.h_start, StateSelect = prefer) (75) [ALGB] (1) Real ambient.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (76) [DISC] (1) Boolean $SEV_5 (77) [DISC] (1) Boolean $SEV_4 (78) [ALGB] (1) Real fixedMassFlowRate.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - fixedMassFlowRate.medium.T_degC)) (79) [ALGB] (1) flow Real shortPipe.port_b.m_flow (min = -1e5, max = 1e60) (80) [ALGB] (1) Real ambient.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (81) [ALGB] (1) Real shortPipe.port_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (82) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.p (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (83) [DISC] (1) Boolean $SEV_1 (84) [ALGB] (2) Real[2] shortPipe.flowModel.vs = {(-shortPipe.port_b.m_flow) / (shortPipe.flowModel.crossAreas[1] * ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph.shortPipe.Medium.density(shortPipe.flowModel.states[1])), -shortPipe.port_b.m_flow / (ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph.shortPipe.Medium.density(shortPipe.flowModel.states[2]) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel (85) [ALGB] (1) Real volume.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (86) [ALGB] (1) Real[1] ambient.ports.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (87) [ALGB] (1) Real volume.medium.p (fixed = true, start = volume.p_start, min = 0.0, nominal = 1e5, StateSelect = prefer) (88) [ALGB] (1) Real volume.Qb_flow (89) [ALGB] (1) Real fixedMassFlowRate.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (90) [ALGB] (1) Real ambient.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (91) [ALGB] (1) Real volume.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (92) [ALGB] (1) flow Real[1] ambient.ports.m_flow (min = {-1e60}, max = {1e60}) (93) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.h (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (94) [DISC] (1) Integer volume.medium.state.phase (min = 0, max = 2) (95) [ALGB] (1) Real volume.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (96) [ALGB] (1) Real ambient.medium.h (StateSelect = default) (97) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.d (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (98) [DISC] (2) Boolean[2] $SEV_12[$i1] (99) [DER-] (1) Real $DER.volume.m (100) [ALGB] (1) Real volume.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (101) [ALGB] (1) Real ambient.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (102) [ALGB] (1) Real fixedMassFlowRate.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (103) [DISC] (1) Integer fixedMassFlowRate.medium.phase (fixed = false, start = 1, min = 0, max = 2) (104) [ALGB] (2) stream Real[2] volume.ports.h_outflow (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (105) [ALGB] (1) Real[1] volume.heatTransfer.Ts = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph.volume.heatTransfer.Medium.temperature(volume.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (106) [DISC] (2) protected Boolean[2] volume.inFlow (start = {false for $i1 in 1:2}) (107) [ALGB] (1) Real ambient.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (108) [ALGB] (1) Real fixedMassFlowRate.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (109) [ALGB] (1) Real[1] shortPipe.flowModel.rhos_act (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (110) [ALGB] (1) Real fixedMassFlowRate.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (111) [ALGB] (1) Real ambient.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (112) [ALGB] (1) flow Real[1] volume.heatTransfer.heatPorts.Q_flow System Equations (107/138) **************************** (1) [SCAL] (1) fixedMassFlowRate.medium.d = fixedMassFlowRate.medium.state.d ($RES_SIM_50) (2) [SCAL] (1) ambient.medium.h = ambient.state.h ($RES_SIM_15) (3) [ARRY] (2) shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} ($RES_BND_145) (4) [SCAL] (1) -((-273.15) - fixedMassFlowRate.medium.T_degC) = fixedMassFlowRate.medium.state.T ($RES_SIM_51) (5) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.state.p ($RES_SIM_16) (6) [SCAL] (1) 99999.99999999999 * fixedMassFlowRate.medium.p_bar = fixedMassFlowRate.medium.state.p ($RES_SIM_52) (7) [SCAL] (1) fixedMassFlowRate.medium.h = fixedMassFlowRate.medium.state.h ($RES_SIM_53) (8) [ARRY] (1) shortPipe.flowModel.dheights = {shortPipe.height_ab} ($RES_BND_148) (9) [ARRY] (1) shortPipe.flowModel.pathLengths = {shortPipe.length} ($RES_BND_149) (10) [SCAL] (1) volume.ports_H_flow[2] = smooth(0, volume.ports[2].m_flow * (if $SEV_14 then shortPipe.port_a.h_outflow else volume.ports[2].h_outflow)) ($RES_SIM_90) (11) [SCAL] (1) fixedMassFlowRate.medium.u = fixedMassFlowRate.medium.h - (99999.99999999999 * fixedMassFlowRate.medium.p_bar) / fixedMassFlowRate.medium.d ($RES_SIM_55) (12) [SCAL] (1) volume.portInDensities[2] = Modelica.Media.Water.IF97_Utilities.rho_ph(volume.vessel_ps_static[2], shortPipe.port_a.h_outflow, 0, 0) ($RES_SIM_91) (13) [SCAL] (1) fixedMassFlowRate.medium.sat.psat = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_56) (14) [SCAL] (1) volume.ports_H_flow[1] = smooth(0, volume.ports[1].m_flow * (if $SEV_15 then fixedMassFlowRate.ports[1].h_outflow else volume.ports[1].h_outflow)) ($RES_SIM_92) (15) [SCAL] (1) fixedMassFlowRate.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(99999.99999999999 * fixedMassFlowRate.medium.p_bar) ($RES_SIM_57) (16) [SCAL] (1) volume.portInDensities[1] = Modelica.Media.Water.IF97_Utilities.rho_ph(volume.vessel_ps_static[1], fixedMassFlowRate.ports[1].h_outflow, 0, 0) ($RES_SIM_93) (17) [SCAL] (1) -((-273.15) - fixedMassFlowRate.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.medium.h, fixedMassFlowRate.medium.phase, 0)) ($RES_SIM_58) (18) [SCAL] (1) fixedMassFlowRate.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.medium.h, fixedMassFlowRate.medium.phase, 0)) ($RES_SIM_59) (19) [ARRY] (2) volume.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_96) (20) [SCAL] (1) $SEV_1 = shortPipe.flowModel.m_flows[1] > 0.0 ($RES_EVT_172) (21) [SCAL] (1) $SEV_4 = (ambient.medium.h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(ambient.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(ambient.medium.sat.psat)) or ambient.medium.h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(ambient.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(ambient.medium.sat.psat))) or 99999.99999999999 * ambient.medium.p_bar > 2.2064e7 ($RES_EVT_175) (22) [SCAL] (1) $SEV_5 = abs(sum({abs(fixedMassFlowRate.ports[1].m_flow)}) - abs(fixedMassFlowRate.ports[1].m_flow)) <= 1e-60 ($RES_EVT_176) (23) [SCAL] (1) $SEV_8 = (fixedMassFlowRate.medium.h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(fixedMassFlowRate.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(fixedMassFlowRate.medium.sat.psat)) or fixedMassFlowRate.medium.h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(fixedMassFlowRate.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(fixedMassFlowRate.medium.sat.psat))) or 99999.99999999999 * fixedMassFlowRate.medium.p_bar > 2.2064e7 ($RES_EVT_179) (24) [SCAL] (1) volume.Qb_flow = volume.heatTransfer.Q_flows[1] ($RES_SIM_100) (25) [SCAL] (1) volume.Hb_flow = $FUN_2 + $FUN_3 ($RES_SIM_101) (26) [FOR-] (2) ($RES_BND_150) (26) [----] for $i1 in 1:2 loop (26) [----] [SCAL] (1) shortPipe.flowModel.rhos[$i1] = shortPipe.flowModel.states.d ($RES_BND_151) (26) [----] end for; (27) [FOR-] (2) ($RES_SIM_103) (27) [----] for $i1 in 1:2 loop (27) [----] [SCAL] (1) volume.vessel_ps_static[$i1] = volume.medium.p ($RES_SIM_104) (27) [----] end for; (28) [FOR-] (2) ($RES_BND_152) (28) [----] for $i1 in 1:2 loop (28) [----] [SCAL] (1) shortPipe.flowModel.mus[$i1] = shortPipe.flowModel.mu_nominal ($RES_BND_153) (28) [----] end for; (29) [SCAL] (1) ambient.medium.phase = ambient.medium.state.phase ($RES_SIM_23) (30) [ARRY] (1) volume.heatTransfer.Q_flows = volume.heatTransfer.heatPorts.Q_flow ($RES_SIM_106) (31) [SCAL] (1) ambient.medium.d = ambient.medium.state.d ($RES_SIM_24) (32) [ARRY] (5) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_154) (33) [SCAL] (1) fixedMassFlowRate.medium.phase = if $SEV_8 then 1 else 2 ($RES_SIM_60) (34) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.medium.state.T ($RES_SIM_25) (35) [ARRY] (1) volume.heatTransfer.Ts = volume.heatTransfer.heatPorts.T ($RES_SIM_107) (36) [ARRY] (10) shortPipe.flowModel.states = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph.shortPipe.Medium.ThermodynamicState(0, volume.ports[2].h_outflow, Modelica.Media.Water.IF97_Utilities.rho_ph(shortPipe.port_a.p, volume.ports[2].h_outflow, 0, 0), Modelica.Media.Water.IF97_Utilities.T_ph(shortPipe.port_a.p, volume.ports[2].h_outflow, 0, 0), shortPipe.port_a.p), ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_ph.shortPipe.Medium.ThermodynamicState(0, ambient.ports[1].h_outflow, Modelica.Media.Water.IF97_Utilities.rho_ph(shortPipe.port_b.p, ambient.ports[1].h_outflow, 0, 0), Modelica.Media.Water.IF97_Utilities.T_ph(shortPipe.port_b.p, ambient.ports[1].h_outflow, 0, 0), shortPipe.port_b.p)} ($RES_BND_155) (37) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.medium.state.p ($RES_SIM_26) (38) [SCAL] (1) $DER.volume.m = volume.mb_flow ($RES_SIM_62) (39) [SCAL] (1) ambient.medium.h = ambient.medium.state.h ($RES_SIM_27) (40) [SCAL] (1) $DER.volume.U = volume.Qb_flow + volume.Hb_flow ($RES_SIM_63) (41) [SCAL] (1) volume.U = volume.m * volume.medium.u ($RES_SIM_64) (42) [SCAL] (1) ambient.medium.u = ambient.medium.h - (99999.99999999999 * ambient.medium.p_bar) / ambient.medium.d ($RES_SIM_29) (43) [SCAL] (1) volume.m = volume.V * volume.medium.d ($RES_SIM_65) (44) [FOR-] (2) ($RES_SIM_66) (44) [----] for $i1 in 1:2 loop (44) [----] [SCAL] (1) volume.portVelocities[$i1] = 0.0 ($RES_SIM_67) (44) [----] end for; (45) [FOR-] (2) ($RES_EVT_180) (45) [----] for $i1 in 1:2 loop (45) [----] [SCAL] (1) $SEV_9[$i1] = 0.0 >= volume.portsData_height[$i1] ($RES_EVT_181) (45) [----] end for; (46) [FOR-] (2) ($RES_EVT_182) (46) [----] for $i1 in 1:2 loop (46) [----] [SCAL] (1) $SEV_10[$i1] = volume.s[$i1] > 0.0 ($RES_EVT_183) (46) [----] end for; (47) [FOR-] (2) ($RES_EVT_184) (47) [----] for $i1 in 1:2 loop (47) [----] [SCAL] (1) $SEV_11[$i1] = volume.portsData_height[$i1] >= volume.fluidLevel_max ($RES_EVT_185) (47) [----] end for; (48) [FOR-] (2) ($RES_EVT_186) (48) [----] for $i1 in 1:2 loop (48) [----] [SCAL] (1) $SEV_12[$i1] = $SEV_10[$i1] or $SEV_11[$i1] ($RES_EVT_187) (48) [----] end for; (49) [FOR-] (2) ($RES_EVT_188) (49) [----] for $i1 in 1:2 loop (49) [----] [SCAL] (1) $SEV_13[$i1] = not volume.regularFlow[$i1] and $SEV_12[$i1] ($RES_EVT_189) (49) [----] end for; (50) [SCAL] (1) volume.medium.phase = volume.medium.state.phase ($RES_SIM_112) (51) [SCAL] (1) ambient.medium.sat.psat = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_30) (52) [SCAL] (1) volume.medium.d = volume.medium.state.d ($RES_SIM_113) (53) [SCAL] (1) ambient.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(99999.99999999999 * ambient.medium.p_bar) ($RES_SIM_31) (54) [SCAL] (1) -((-273.15) - volume.medium.T_degC) = volume.medium.state.T ($RES_SIM_114) (55) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(99999.99999999999 * ambient.medium.p_bar, ambient.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * ambient.medium.p_bar, ambient.medium.h, ambient.medium.phase, 0)) ($RES_SIM_32) (56) [SCAL] (1) volume.medium.p = volume.medium.state.p ($RES_SIM_115) (57) [SCAL] (1) ambient.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(99999.99999999999 * ambient.medium.p_bar, ambient.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * ambient.medium.p_bar, ambient.medium.h, ambient.medium.phase, 0)) ($RES_SIM_33) (58) [SCAL] (1) volume.medium.h = volume.medium.state.h ($RES_SIM_116) (59) [SCAL] (1) ambient.medium.phase = if $SEV_4 then 1 else 2 ($RES_SIM_34) (60) [SCAL] (1) volume.medium.u = volume.medium.h - volume.medium.p / volume.medium.d ($RES_SIM_118) (61) [SCAL] (1) fixedMassFlowRate.ports[1].p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_36) (62) [SCAL] (1) volume.medium.sat.psat = volume.medium.p ($RES_SIM_119) (63) [FOR-] (2) ($RES_SIM_72) (63) [----] for $i1 in 1:2 loop (63) [----] [SCAL] (1) volume.regularFlow[$i1] = $SEV_9[$i1] ($RES_SIM_73) (63) [----] end for; (64) [SCAL] (1) fixedMassFlowRate.ports[1].h_outflow = fixedMassFlowRate.medium.h ($RES_SIM_37) (65) [FOR-] (2) ($RES_SIM_74) (65) [----] for $i1 in 1:2 loop (65) [----] [SCAL] (1) volume.inFlow[$i1] = $SEV_13[$i1] ($RES_SIM_75) (65) [----] end for; (66) [FOR-] (2) ($RES_SIM_76) (66) [----] for $i1 in 1:2 loop (66) [----] [-IF-] (1)if volume.regularFlow[$i1] then (66) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_78) (66) [----] [----] elseif volume.inFlow[$i1] then (66) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_79) (66) [----] [----] else (66) [----] [----] [SCAL] (1) volume.ports[$i1].m_flow = 0.0 ($RES_SIM_80) (66) [----] [----] end if; (66) [----] end for; (67) [SCAL] (1) $SEV_14 = volume.ports[2].m_flow > 0.0 ($RES_EVT_190) (68) [SCAL] (1) $SEV_15 = volume.ports[1].m_flow > 0.0 ($RES_EVT_191) (69) [SCAL] (1) $SEV_18 = volume.medium.p >= 0.0 ($RES_EVT_194) (70) [SCAL] (1) $SEV_20 = (volume.medium.h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(volume.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(volume.medium.sat.psat)) or volume.medium.h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(volume.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(volume.medium.sat.psat))) or volume.medium.p > 2.2064e7 ($RES_EVT_196) (71) [SCAL] (1) volume.mb_flow = sum(volume.ports.m_flow) ($RES_$AUX_159) (72) [SCAL] (1) $FUN_2 = sum(volume.ports_H_flow) ($RES_$AUX_158) (73) [SCAL] (1) $FUN_3 = sum(volume.ports_E_flow) ($RES_$AUX_157) (74) [SCAL] (1) volume.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(volume.medium.p) ($RES_SIM_120) (75) [SCAL] (1) -fixedMassFlowRate.m_flow = sum(fixedMassFlowRate.ports.m_flow) ($RES_$AUX_156) (76) [SCAL] (1) -((-273.15) - volume.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(volume.medium.p, volume.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(volume.medium.p, volume.medium.h, volume.medium.phase, 0)) ($RES_SIM_121) (77) [SCAL] (1) fixedMassFlowRate.medium.h = Modelica.Media.Water.IF97_Utilities.h_pT(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.T, 0) ($RES_SIM_40) (78) [SCAL] (1) volume.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(volume.medium.p, volume.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(volume.medium.p, volume.medium.h, volume.medium.phase, 0)) ($RES_SIM_122) (79) [SCAL] (1) volume.medium.phase = if $SEV_20 then 1 else 2 ($RES_SIM_123) (80) [ARRY] (1) volume.heatTransfer.Ts = {volume.heatTransfer.states.h} ($RES_BND_136) (81) [SCAL] (1) shortPipe.port_b.m_flow + ambient.ports[1].m_flow = 0.0 ($RES_SIM_125) (82) [SCAL] (1) volume.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_126) (83) [SCAL] (1) ambient.state.h = Modelica.Media.Water.IF97_Utilities.h_pT(ambient.p, ambient.T, 0) ($RES_SIM_161) (84) [SCAL] (1) volume.ports[2].m_flow - shortPipe.port_b.m_flow = 0.0 ($RES_SIM_127) (85) [FOR-] (2) ($RES_SIM_81) (85) [----] for $i1 in 1:2 loop (85) [----] [-IF-] (1)if volume.regularFlow[$i1] then (85) [----] [----] [SCAL] (1) volume.s[$i1] = 0.0 - volume.portsData_height[$i1] ($RES_SIM_83) (85) [----] [----] elseif volume.inFlow[$i1] then (85) [----] [----] [SCAL] (1) volume.s[$i1] = volume.ports[$i1].m_flow ($RES_SIM_84) (85) [----] [----] else (85) [----] [----] [SCAL] (1) volume.s[$i1] = ((volume.ports[$i1].p - volume.vessel_ps_static[$i1]) / 101325.0) * (volume.portsData_height[$i1] - 0.0) ($RES_SIM_85) (85) [----] [----] end if; (85) [----] end for; (86) [SCAL] (1) shortPipe.port_b.p = ambient.ports[1].p ($RES_SIM_128) (87) [SCAL] (1) volume.ports[2].p = shortPipe.port_a.p ($RES_SIM_129) (88) [SCAL] (1) ambient.state.p = ambient.p ($RES_SIM_164) (89) [SCAL] (1) fixedMassFlowRate.medium.phase = fixedMassFlowRate.medium.state.phase ($RES_SIM_49) (90) [FOR-] (2) ($RES_SIM_86) (90) [----] for $i1 in 1:2 loop (90) [----] [SCAL] (1) volume.ports[$i1].h_outflow = volume.medium.h ($RES_SIM_87) (90) [----] end for; (91) [FOR-] (2) ($RES_SIM_88) (91) [----] for $i1 in 1:2 loop (91) [----] [SCAL] (1) volume.ports_E_flow[$i1] = volume.ports[$i1].m_flow * (volume.portVelocities[$i1] * 0.5 * volume.portVelocities[$i1] + system.g * volume.portsData_height[$i1]) ($RES_SIM_89) (91) [----] end for; (92) [ARRY] (1) shortPipe.flowModel.Ib_flows = {0.0} ($RES_SIM_9) (93) [ARRY] (1) shortPipe.flowModel.Fs_p = shortPipe.flowModel.nParallel * {0.5 * (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2]) * (shortPipe.flowModel.states.phase - shortPipe.flowModel.states.phase)} ($RES_SIM_8) (94) [ARRY] (1) shortPipe.flowModel.dps_fg = {(2.0 * (shortPipe.flowModel.Fs_fg[1] / shortPipe.flowModel.nParallel)) / (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2])} ($RES_SIM_7) (95) [ARRY] (1) shortPipe.flowModel.Is = {shortPipe.flowModel.m_flows[1] * shortPipe.flowModel.pathLengths[1]} ($RES_SIM_6) (96) [ARRY] (1) {0.0} = shortPipe.flowModel.Ib_flows - (shortPipe.flowModel.Fs_fg + shortPipe.flowModel.Fs_p) ($RES_SIM_5) (97) [SCAL] (1) -shortPipe.port_b.m_flow = shortPipe.flowModel.m_flows[1] ($RES_SIM_4) (98) [SCAL] (1) shortPipe.port_b.h_outflow = volume.ports[2].h_outflow - system.g * shortPipe.height_ab ($RES_SIM_2) (99) [SCAL] (1) shortPipe.port_a.h_outflow = ambient.ports[1].h_outflow + system.g * shortPipe.height_ab ($RES_SIM_1) (100) [SCAL] (1) shortPipe.flowModel.rhos_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2]) ($RES_SIM_10) (101) [SCAL] (1) shortPipe.flowModel.mus_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.mus[1] else shortPipe.flowModel.mus[2]) ($RES_SIM_11) (102) [ARRY] (1) shortPipe.flowModel.dps_fg = {shortPipe.flowModel.dheights[1] * shortPipe.flowModel.g * (if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2])} + shortPipe.flowModel.dp_nominal / shortPipe.flowModel.m_flow_nominal * shortPipe.flowModel.m_flows ($RES_SIM_12) (103) [SCAL] (1) volume.ports[1].m_flow + fixedMassFlowRate.ports[1].m_flow = 0.0 ($RES_SIM_130) (104) [SCAL] (1) ambient.ports[1].p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_13) (105) [SCAL] (1) fixedMassFlowRate.ports[1].p = volume.ports[1].p ($RES_SIM_131) (106) [SCAL] (1) ambient.ports[1].h_outflow = ambient.medium.h ($RES_SIM_14) (107) [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * shortPipe.flowModel.states.d), -shortPipe.port_b.m_flow / (shortPipe.flowModel.states.d * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_144)