Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT") translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001049/0.001049, allocations: 106.8 kB / 16.42 MB, free: 6.473 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.0009705/0.0009705, allocations: 190 kB / 17.36 MB, free: 5.707 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.273/1.273, allocations: 205.1 MB / 223.2 MB, free: 12.21 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo): time 0.1799/0.1799, allocations: 39.96 MB / 310.5 MB, free: 4.012 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.367e-05/2.368e-05, allocations: 13.67 kB / 436.4 MB, free: 11.77 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT): time 0.03137/0.0314, allocations: 39.03 MB / 475.5 MB, free: 4.594 MB / 350.1 MB Notification: Performance of NFInst.instExpressions: time 0.02093/0.05236, allocations: 20.16 MB / 495.6 MB, free: 376 kB / 366.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0007105/0.0531, allocations: 19.88 kB / 495.6 MB, free: 356 kB / 366.1 MB Notification: Performance of NFTyping.typeComponents: time 0.001077/0.05419, allocations: 441.4 kB / 496.1 MB, free: 15.91 MB / 382.1 MB Notification: Performance of NFTyping.typeBindings: time 0.01348/0.06768, allocations: 5.103 MB / 0.4894 GB, free: 10.81 MB / 382.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.006343/0.07405, allocations: 2.565 MB / 0.4919 GB, free: 8.234 MB / 382.1 MB Notification: Performance of NFFlatten.flatten: time 0.002741/0.0768, allocations: 2.082 MB / 0.494 GB, free: 6.148 MB / 382.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.000716/0.07753, allocations: 469.6 kB / 0.4944 GB, free: 5.688 MB / 382.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.00862/0.08616, allocations: 4.254 MB / 0.4986 GB, free: 1.379 MB / 382.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.01038/0.09656, allocations: 5.42 MB / 0.5039 GB, free: 11.88 MB / 398.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0002291/0.09682, allocations: 64 kB / 0.5039 GB, free: 11.81 MB / 398.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.01101/0.1078, allocations: 6.759 MB / 0.5105 GB, free: 5.047 MB / 398.1 MB Notification: Performance of combineBinaries: time 0.001756/0.1096, allocations: 1.455 MB / 0.5119 GB, free: 3.578 MB / 398.1 MB Notification: Performance of replaceArrayConstructors: time 0.0008827/0.1105, allocations: 0.9458 MB / 0.5129 GB, free: 2.621 MB / 398.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0003078/0.1109, allocations: 139.6 kB / 0.513 GB, free: 2.484 MB / 398.1 MB Notification: Performance of FrontEnd: time 0.0001769/0.111, allocations: 27.86 kB / 0.513 GB, free: 2.457 MB / 398.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 160 (122) * Number of variables: 170 (131) Notification: Performance of Bindings: time 0.2056/0.3166, allocations: 4.182 MB / 0.5171 GB, free: 25.45 MB / 398.1 MB Notification: Performance of FunctionAlias: time 0.0002619/0.3169, allocations: 189.4 kB / 0.5173 GB, free: 25.45 MB / 398.1 MB Notification: Performance of Early Inline: time 0.002038/0.3189, allocations: 2.035 MB / 0.5193 GB, free: 25.32 MB / 398.1 MB Notification: Performance of simplify1: time 0.0001704/0.3191, allocations: 115.2 kB / 0.5194 GB, free: 25.32 MB / 398.1 MB Notification: Performance of Alias: time 0.00204/0.3212, allocations: 1.879 MB / 0.5212 GB, free: 24.75 MB / 398.1 MB Notification: Performance of simplify2: time 0.0001542/0.3213, allocations: 113.7 kB / 0.5213 GB, free: 24.75 MB / 398.1 MB Notification: Performance of Events: time 0.0003978/0.3217, allocations: 347.3 kB / 0.5217 GB, free: 24.69 MB / 398.1 MB Notification: Performance of Detect States: time 0.0004701/0.3222, allocations: 0.5518 MB / 0.5222 GB, free: 24.62 MB / 398.1 MB Notification: Performance of Partitioning: time 0.0007398/0.323, allocations: 0.9529 MB / 0.5231 GB, free: 24.18 MB / 398.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency volume.heatTransfer.states.p could not be divided by the body size 5 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (5) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_154) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (102/138) **************************** (1) [ALGB] (1) Real ambient.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (2) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.T (start = {500.0 for $i1 in 1:2}, min = {273.15 for $i1 in 1:2}, max = {2273.15 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (3) [ALGB] (1) Real fixedMassFlowRate.medium.h (StateSelect = default) (4) [ALGB] (1) Real fixedMassFlowRate.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (5) [ALGB] (1) Real[1] shortPipe.flowModel.Ib_flows (6) [ALGB] (1) Real fixedMassFlowRate.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (7) [ALGB] (1) Real fixedMassFlowRate.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (8) [ALGB] (1) Real volume.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (9) [ALGB] (1) Real ambient.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * ambient.medium.p_bar) (10) [ALGB] (1) Real[1] volume.heatTransfer.Q_flows (11) [ALGB] (2) Real[2] volume.portInDensities (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (12) [ALGB] (1) Real[1] shortPipe.flowModel.Is (13) [ALGB] (2) Real[2] shortPipe.flowModel.mus = {shortPipe.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (14) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.T = {volume.medium.state.T} (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (15) [ALGB] (2) protected Real[2] volume.portsData_height (16) [ALGB] (2) Real[2] shortPipe.flowModel.rhos = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT.shortPipe.flowModel.Medium.density(shortPipe.flowModel.states[$i1]) for $i1 in 1:2} (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (17) [ALGB] (1) Real ambient.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - ambient.medium.T_degC)) (18) [ALGB] (1) stream Real[1] fixedMassFlowRate.ports.h_outflow (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (19) [DISC] (1) final input Integer[1, 1] volume.heatTransfer.states.phase = {volume.medium.state.phase} (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (20) [ALGB] (1) Real volume.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (21) [DISC] (2) Boolean[2] $SEV_11[$i1] (22) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_fg (23) [ALGB] (2) Real[2] volume.portVelocities (24) [ALGB] (1) stream Real shortPipe.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (25) [ALGB] (1) Real shortPipe.port_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (26) [ALGB] (1) Real[1] volume.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (27) [ALGB] (2) Real[2] volume.vessel_ps_static (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (28) [ALGB] (1) Real[1] shortPipe.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (29) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.d = {volume.medium.state.d} (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (30) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.h = {volume.medium.state.h} (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (31) [ALGB] (1) protected Real ambient.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (32) [ALGB] (1) Real[1] shortPipe.flowModel.dps_fg (start = {shortPipe.flowModel.p_a_start - shortPipe.flowModel.p_b_start for $i1 in 1:1}) (33) [ALGB] (1) Real[1] shortPipe.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (34) [ALGB] (1) Real volume.mb_flow (35) [DISC] (2) protected Boolean[2] volume.regularFlow (start = {true for $i1 in 1:2}) (36) [ALGB] (1) stream Real[1] ambient.ports.h_outflow (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (37) [ALGB] (1) Real $FUN_3 (38) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.p = {volume.medium.state.p} (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (39) [ALGB] (1) Real $FUN_2 (40) [ALGB] (1) final Real[1] shortPipe.flowModel.pathLengths = {shortPipe.length} (41) [DISC] (2) Boolean[2] $SEV_9[$i1] (42) [ALGB] (1) flow Real[1] fixedMassFlowRate.ports.m_flow (min = {-1e60}, max = {1e60}) (43) [ALGB] (2) Real[2] volume.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (44) [ALGB] (1) Real[1] fixedMassFlowRate.ports.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (45) [DISC] (2) Boolean[2] $SEV_10[$i1] (46) [ALGB] (1) protected Real ambient.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (47) [ALGB] (2) Real[2] volume.ports_E_flow (48) [DISC] (1) Boolean $SEV_16 (49) [ALGB] (1) stream Real shortPipe.port_b.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (50) [DISC] (1) Boolean $SEV_13 (51) [DISC] (1) Boolean $SEV_12 (52) [ALGB] (1) Real volume.medium.T (fixed = true, start = volume.T_start, min = 273.15, max = 2273.15, nominal = 500.0, StateSelect = prefer) (53) [ALGB] (1) final Real[1] shortPipe.flowModel.dheights = {shortPipe.height_ab} (54) [ALGB] (2) Real[2] volume.s (start = {volume.fluidLevel_max for $i1 in 1:2}) (55) [ALGB] (1) Real ambient.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (56) [ALGB] (1) Real fixedMassFlowRate.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * fixedMassFlowRate.medium.p_bar) (57) [ALGB] (1) Real volume.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (58) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_p (59) [ALGB] (1) Real volume.Hb_flow (60) [ALGB] (2) flow Real[2] volume.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (61) [DISC] (2) Boolean[2] $SEV_8[$i1] (62) [DER-] (1) Real $DER.volume.U (63) [ALGB] (1) Real volume.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (64) [ALGB] (2) Real[2] volume.ports.p (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (65) [DISC] (4) input Integer[2, 2] shortPipe.flowModel.states.phase (min = {0 for $i1 in 1:2}, max = {2 for $i1 in 1:2}) (66) [ALGB] (2) final Real[2] shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} (67) [ALGB] (1) Real ambient.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (68) [ALGB] (1) Real volume.medium.h (start = volume.h_start, StateSelect = default) (69) [DISC] (1) Boolean $SEV_4 (70) [ALGB] (1) flow Real shortPipe.port_b.m_flow (min = -1e5, max = 1e60) (71) [ALGB] (1) Real ambient.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (72) [ALGB] (1) Real shortPipe.port_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (73) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.p (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (74) [DISC] (1) Boolean $SEV_1 (75) [ALGB] (2) Real[2] shortPipe.flowModel.vs = {(-shortPipe.port_b.m_flow) / (shortPipe.flowModel.crossAreas[1] * ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT.shortPipe.Medium.density(shortPipe.flowModel.states[1])), -shortPipe.port_b.m_flow / (ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT.shortPipe.Medium.density(shortPipe.flowModel.states[2]) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel (76) [ALGB] (1) Real[1] ambient.ports.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (77) [ALGB] (1) Real volume.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (78) [ALGB] (1) Real volume.medium.p (fixed = true, start = volume.p_start, min = 0.0, nominal = 1e5, StateSelect = prefer) (79) [ALGB] (1) Real volume.Qb_flow (80) [ALGB] (1) Real fixedMassFlowRate.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (81) [ALGB] (1) Real ambient.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (82) [ALGB] (1) Real volume.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (83) [ALGB] (1) flow Real[1] ambient.ports.m_flow (min = {-1e60}, max = {1e60}) (84) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.h (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (85) [DISC] (1) Integer volume.medium.state.phase (min = 0, max = 2) (86) [ALGB] (1) Real volume.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (87) [ALGB] (1) Real ambient.medium.h (StateSelect = default) (88) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.d (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (89) [DER-] (1) Real $DER.volume.m (90) [ALGB] (1) Real volume.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (91) [ALGB] (1) Real ambient.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (92) [ALGB] (1) Real fixedMassFlowRate.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (93) [ALGB] (2) stream Real[2] volume.ports.h_outflow (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (94) [ALGB] (1) Real[1] volume.heatTransfer.Ts = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT.volume.heatTransfer.Medium.temperature(volume.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (95) [DISC] (2) protected Boolean[2] volume.inFlow (start = {false for $i1 in 1:2}) (96) [ALGB] (1) Real ambient.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (97) [ALGB] (1) Real fixedMassFlowRate.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (98) [ALGB] (1) Real[1] shortPipe.flowModel.rhos_act (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (99) [ALGB] (1) Real fixedMassFlowRate.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (100) [ALGB] (1) Real ambient.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (101) [ALGB] (1) flow Real[1] volume.heatTransfer.heatPorts.Q_flow (102) [DISC] (2) Boolean[2] $SEV_7[$i1] System Equations (97/128) *************************** (1) [SCAL] (1) fixedMassFlowRate.medium.d = fixedMassFlowRate.medium.state.d ($RES_SIM_50) (2) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.state.T ($RES_SIM_15) (3) [ARRY] (2) shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} ($RES_BND_145) (4) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.state.p ($RES_SIM_16) (5) [SCAL] (1) 99999.99999999999 * fixedMassFlowRate.medium.p_bar = fixedMassFlowRate.medium.state.p ($RES_SIM_52) (6) [SCAL] (1) fixedMassFlowRate.medium.h = fixedMassFlowRate.medium.state.h ($RES_SIM_53) (7) [ARRY] (1) shortPipe.flowModel.dheights = {shortPipe.height_ab} ($RES_BND_148) (8) [ARRY] (1) shortPipe.flowModel.pathLengths = {shortPipe.length} ($RES_BND_149) (9) [SCAL] (1) volume.ports_H_flow[2] = smooth(0, volume.ports[2].m_flow * (if $SEV_12 then shortPipe.port_a.h_outflow else volume.ports[2].h_outflow)) ($RES_SIM_90) (10) [SCAL] (1) fixedMassFlowRate.medium.u = fixedMassFlowRate.medium.h - (99999.99999999999 * fixedMassFlowRate.medium.p_bar) / fixedMassFlowRate.medium.d ($RES_SIM_55) (11) [SCAL] (1) volume.portInDensities[2] = Modelica.Media.Water.IF97_Utilities.rho_ph(volume.vessel_ps_static[2], shortPipe.port_a.h_outflow, 0, 0) ($RES_SIM_91) (12) [SCAL] (1) fixedMassFlowRate.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(99999.99999999999 * fixedMassFlowRate.medium.p_bar) ($RES_SIM_56) (13) [SCAL] (1) volume.ports_H_flow[1] = smooth(0, volume.ports[1].m_flow * (if $SEV_13 then fixedMassFlowRate.ports[1].h_outflow else volume.ports[1].h_outflow)) ($RES_SIM_92) (14) [SCAL] (1) fixedMassFlowRate.medium.sat.psat = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_57) (15) [SCAL] (1) volume.portInDensities[1] = Modelica.Media.Water.IF97_Utilities.rho_ph(volume.vessel_ps_static[1], fixedMassFlowRate.ports[1].h_outflow, 0, 0) ($RES_SIM_93) (16) [SCAL] (1) fixedMassFlowRate.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_pT(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.T, Modelica.Media.Water.IF97_Utilities.waterBaseProp_pT(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.T, 0)) ($RES_SIM_58) (17) [SCAL] (1) fixedMassFlowRate.medium.h = Modelica.Media.Water.IF97_Utilities.h_props_pT(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.T, Modelica.Media.Water.IF97_Utilities.waterBaseProp_pT(99999.99999999999 * fixedMassFlowRate.medium.p_bar, fixedMassFlowRate.T, 0)) ($RES_SIM_59) (18) [ARRY] (2) volume.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_96) (19) [SCAL] (1) $SEV_1 = shortPipe.flowModel.m_flows[1] > 0.0 ($RES_EVT_171) (20) [SCAL] (1) $SEV_4 = abs(sum({abs(fixedMassFlowRate.ports[1].m_flow)}) - abs(fixedMassFlowRate.ports[1].m_flow)) <= 1e-60 ($RES_EVT_174) (21) [FOR-] (2) ($RES_EVT_177) (21) [----] for $i1 in 1:2 loop (21) [----] [SCAL] (1) $SEV_7[$i1] = 0.0 >= volume.portsData_height[$i1] ($RES_EVT_178) (21) [----] end for; (22) [FOR-] (2) ($RES_EVT_179) (22) [----] for $i1 in 1:2 loop (22) [----] [SCAL] (1) $SEV_8[$i1] = volume.s[$i1] > 0.0 ($RES_EVT_180) (22) [----] end for; (23) [SCAL] (1) volume.Qb_flow = volume.heatTransfer.Q_flows[1] ($RES_SIM_100) (24) [SCAL] (1) volume.Hb_flow = $FUN_2 + $FUN_3 ($RES_SIM_101) (25) [FOR-] (2) ($RES_BND_150) (25) [----] for $i1 in 1:2 loop (25) [----] [SCAL] (1) shortPipe.flowModel.rhos[$i1] = shortPipe.flowModel.states.d ($RES_BND_151) (25) [----] end for; (26) [FOR-] (2) ($RES_SIM_103) (26) [----] for $i1 in 1:2 loop (26) [----] [SCAL] (1) volume.vessel_ps_static[$i1] = volume.medium.p ($RES_SIM_104) (26) [----] end for; (27) [FOR-] (2) ($RES_BND_152) (27) [----] for $i1 in 1:2 loop (27) [----] [SCAL] (1) shortPipe.flowModel.mus[$i1] = shortPipe.flowModel.mu_nominal ($RES_BND_153) (27) [----] end for; (28) [SCAL] (1) ambient.medium.d = ambient.medium.state.d ($RES_SIM_24) (29) [ARRY] (1) volume.heatTransfer.Q_flows = volume.heatTransfer.heatPorts.Q_flow ($RES_SIM_106) (30) [ARRY] (5) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_154) (31) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.medium.state.T ($RES_SIM_25) (32) [ARRY] (1) volume.heatTransfer.Ts = volume.heatTransfer.heatPorts.T ($RES_SIM_107) (33) [ARRY] (10) shortPipe.flowModel.states = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT.shortPipe.Medium.ThermodynamicState(0, volume.ports[2].h_outflow, Modelica.Media.Water.IF97_Utilities.rho_ph(shortPipe.port_a.p, volume.ports[2].h_outflow, 0, 0), Modelica.Media.Water.IF97_Utilities.T_ph(shortPipe.port_a.p, volume.ports[2].h_outflow, 0, 0), shortPipe.port_a.p), ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.WaterIF97_pT.shortPipe.Medium.ThermodynamicState(0, ambient.ports[1].h_outflow, Modelica.Media.Water.IF97_Utilities.rho_ph(shortPipe.port_b.p, ambient.ports[1].h_outflow, 0, 0), Modelica.Media.Water.IF97_Utilities.T_ph(shortPipe.port_b.p, ambient.ports[1].h_outflow, 0, 0), shortPipe.port_b.p)} ($RES_BND_155) (34) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.medium.state.p ($RES_SIM_26) (35) [SCAL] (1) $DER.volume.m = volume.mb_flow ($RES_SIM_62) (36) [SCAL] (1) ambient.medium.h = ambient.medium.state.h ($RES_SIM_27) (37) [SCAL] (1) $DER.volume.U = volume.Qb_flow + volume.Hb_flow ($RES_SIM_63) (38) [SCAL] (1) volume.U = volume.m * volume.medium.u ($RES_SIM_64) (39) [SCAL] (1) ambient.medium.u = ambient.medium.h - (99999.99999999999 * ambient.medium.p_bar) / ambient.medium.d ($RES_SIM_29) (40) [SCAL] (1) volume.m = volume.V * volume.medium.d ($RES_SIM_65) (41) [FOR-] (2) ($RES_SIM_66) (41) [----] for $i1 in 1:2 loop (41) [----] [SCAL] (1) volume.portVelocities[$i1] = 0.0 ($RES_SIM_67) (41) [----] end for; (42) [FOR-] (2) ($RES_EVT_181) (42) [----] for $i1 in 1:2 loop (42) [----] [SCAL] (1) $SEV_9[$i1] = volume.portsData_height[$i1] >= volume.fluidLevel_max ($RES_EVT_182) (42) [----] end for; (43) [FOR-] (2) ($RES_EVT_183) (43) [----] for $i1 in 1:2 loop (43) [----] [SCAL] (1) $SEV_10[$i1] = $SEV_8[$i1] or $SEV_9[$i1] ($RES_EVT_184) (43) [----] end for; (44) [FOR-] (2) ($RES_EVT_185) (44) [----] for $i1 in 1:2 loop (44) [----] [SCAL] (1) $SEV_11[$i1] = not volume.regularFlow[$i1] and $SEV_10[$i1] ($RES_EVT_186) (44) [----] end for; (45) [SCAL] (1) $SEV_12 = volume.ports[2].m_flow > 0.0 ($RES_EVT_187) (46) [SCAL] (1) $SEV_13 = volume.ports[1].m_flow > 0.0 ($RES_EVT_188) (47) [SCAL] (1) 1 = volume.medium.state.phase ($RES_SIM_112) (48) [SCAL] (1) ambient.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(99999.99999999999 * ambient.medium.p_bar) ($RES_SIM_30) (49) [SCAL] (1) volume.medium.d = volume.medium.state.d ($RES_SIM_113) (50) [SCAL] (1) ambient.medium.sat.psat = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_31) (51) [SCAL] (1) volume.medium.T = volume.medium.state.T ($RES_SIM_114) (52) [SCAL] (1) ambient.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_pT(99999.99999999999 * ambient.medium.p_bar, -((-273.15) - ambient.medium.T_degC), Modelica.Media.Water.IF97_Utilities.waterBaseProp_pT(99999.99999999999 * ambient.medium.p_bar, -((-273.15) - ambient.medium.T_degC), 0)) ($RES_SIM_32) (53) [SCAL] (1) volume.medium.p = volume.medium.state.p ($RES_SIM_115) (54) [SCAL] (1) ambient.medium.h = Modelica.Media.Water.IF97_Utilities.h_props_pT(99999.99999999999 * ambient.medium.p_bar, -((-273.15) - ambient.medium.T_degC), Modelica.Media.Water.IF97_Utilities.waterBaseProp_pT(99999.99999999999 * ambient.medium.p_bar, -((-273.15) - ambient.medium.T_degC), 0)) ($RES_SIM_33) (55) [SCAL] (1) volume.medium.h = volume.medium.state.h ($RES_SIM_116) (56) [SCAL] (1) volume.medium.u = volume.medium.h - volume.medium.p / volume.medium.d ($RES_SIM_118) (57) [SCAL] (1) fixedMassFlowRate.ports[1].p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_36) (58) [SCAL] (1) volume.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(volume.medium.p) ($RES_SIM_119) (59) [FOR-] (2) ($RES_SIM_72) (59) [----] for $i1 in 1:2 loop (59) [----] [SCAL] (1) volume.regularFlow[$i1] = $SEV_7[$i1] ($RES_SIM_73) (59) [----] end for; (60) [SCAL] (1) fixedMassFlowRate.ports[1].h_outflow = fixedMassFlowRate.medium.h ($RES_SIM_37) (61) [FOR-] (2) ($RES_SIM_74) (61) [----] for $i1 in 1:2 loop (61) [----] [SCAL] (1) volume.inFlow[$i1] = $SEV_11[$i1] ($RES_SIM_75) (61) [----] end for; (62) [FOR-] (2) ($RES_SIM_76) (62) [----] for $i1 in 1:2 loop (62) [----] [-IF-] (1)if volume.regularFlow[$i1] then (62) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_78) (62) [----] [----] elseif volume.inFlow[$i1] then (62) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_79) (62) [----] [----] else (62) [----] [----] [SCAL] (1) volume.ports[$i1].m_flow = 0.0 ($RES_SIM_80) (62) [----] [----] end if; (62) [----] end for; (63) [SCAL] (1) $SEV_16 = volume.medium.p >= 0.0 ($RES_EVT_191) (64) [SCAL] (1) volume.mb_flow = sum(volume.ports.m_flow) ($RES_$AUX_159) (65) [SCAL] (1) $FUN_2 = sum(volume.ports_H_flow) ($RES_$AUX_158) (66) [SCAL] (1) $FUN_3 = sum(volume.ports_E_flow) ($RES_$AUX_157) (67) [SCAL] (1) volume.medium.sat.psat = volume.medium.p ($RES_SIM_120) (68) [SCAL] (1) -fixedMassFlowRate.m_flow = sum(fixedMassFlowRate.ports.m_flow) ($RES_$AUX_156) (69) [SCAL] (1) volume.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_pT(volume.medium.p, volume.medium.T, Modelica.Media.Water.IF97_Utilities.waterBaseProp_pT(volume.medium.p, volume.medium.T, 0)) ($RES_SIM_121) (70) [SCAL] (1) volume.medium.h = Modelica.Media.Water.IF97_Utilities.h_props_pT(volume.medium.p, volume.medium.T, Modelica.Media.Water.IF97_Utilities.waterBaseProp_pT(volume.medium.p, volume.medium.T, 0)) ($RES_SIM_122) (71) [ARRY] (1) volume.heatTransfer.Ts = {volume.heatTransfer.states.h} ($RES_BND_136) (72) [SCAL] (1) shortPipe.port_b.m_flow + ambient.ports[1].m_flow = 0.0 ($RES_SIM_125) (73) [SCAL] (1) volume.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_126) (74) [SCAL] (1) volume.ports[2].m_flow - shortPipe.port_b.m_flow = 0.0 ($RES_SIM_127) (75) [FOR-] (2) ($RES_SIM_81) (75) [----] for $i1 in 1:2 loop (75) [----] [-IF-] (1)if volume.regularFlow[$i1] then (75) [----] [----] [SCAL] (1) volume.s[$i1] = 0.0 - volume.portsData_height[$i1] ($RES_SIM_83) (75) [----] [----] elseif volume.inFlow[$i1] then (75) [----] [----] [SCAL] (1) volume.s[$i1] = volume.ports[$i1].m_flow ($RES_SIM_84) (75) [----] [----] else (75) [----] [----] [SCAL] (1) volume.s[$i1] = ((volume.ports[$i1].p - volume.vessel_ps_static[$i1]) / 101325.0) * (volume.portsData_height[$i1] - 0.0) ($RES_SIM_85) (75) [----] [----] end if; (75) [----] end for; (76) [SCAL] (1) shortPipe.port_b.p = ambient.ports[1].p ($RES_SIM_128) (77) [SCAL] (1) ambient.state.T = ambient.T ($RES_SIM_163) (78) [SCAL] (1) volume.ports[2].p = shortPipe.port_a.p ($RES_SIM_129) (79) [SCAL] (1) ambient.state.p = ambient.p ($RES_SIM_164) (80) [FOR-] (2) ($RES_SIM_86) (80) [----] for $i1 in 1:2 loop (80) [----] [SCAL] (1) volume.ports[$i1].h_outflow = volume.medium.h ($RES_SIM_87) (80) [----] end for; (81) [FOR-] (2) ($RES_SIM_88) (81) [----] for $i1 in 1:2 loop (81) [----] [SCAL] (1) volume.ports_E_flow[$i1] = volume.ports[$i1].m_flow * (volume.portVelocities[$i1] * 0.5 * volume.portVelocities[$i1] + system.g * volume.portsData_height[$i1]) ($RES_SIM_89) (81) [----] end for; (82) [ARRY] (1) shortPipe.flowModel.Ib_flows = {0.0} ($RES_SIM_9) (83) [ARRY] (1) shortPipe.flowModel.Fs_p = shortPipe.flowModel.nParallel * {0.5 * (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2]) * (shortPipe.flowModel.states.phase - shortPipe.flowModel.states.phase)} ($RES_SIM_8) (84) [ARRY] (1) shortPipe.flowModel.dps_fg = {(2.0 * (shortPipe.flowModel.Fs_fg[1] / shortPipe.flowModel.nParallel)) / (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2])} ($RES_SIM_7) (85) [ARRY] (1) shortPipe.flowModel.Is = {shortPipe.flowModel.m_flows[1] * shortPipe.flowModel.pathLengths[1]} ($RES_SIM_6) (86) [ARRY] (1) {0.0} = shortPipe.flowModel.Ib_flows - (shortPipe.flowModel.Fs_fg + shortPipe.flowModel.Fs_p) ($RES_SIM_5) (87) [SCAL] (1) -shortPipe.port_b.m_flow = shortPipe.flowModel.m_flows[1] ($RES_SIM_4) (88) [SCAL] (1) shortPipe.port_b.h_outflow = volume.ports[2].h_outflow - system.g * shortPipe.height_ab ($RES_SIM_2) (89) [SCAL] (1) shortPipe.port_a.h_outflow = ambient.ports[1].h_outflow + system.g * shortPipe.height_ab ($RES_SIM_1) (90) [SCAL] (1) shortPipe.flowModel.rhos_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2]) ($RES_SIM_10) (91) [SCAL] (1) shortPipe.flowModel.mus_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.mus[1] else shortPipe.flowModel.mus[2]) ($RES_SIM_11) (92) [ARRY] (1) shortPipe.flowModel.dps_fg = {shortPipe.flowModel.dheights[1] * shortPipe.flowModel.g * (if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2])} + shortPipe.flowModel.dp_nominal / shortPipe.flowModel.m_flow_nominal * shortPipe.flowModel.m_flows ($RES_SIM_12) (93) [SCAL] (1) volume.ports[1].m_flow + fixedMassFlowRate.ports[1].m_flow = 0.0 ($RES_SIM_130) (94) [SCAL] (1) ambient.ports[1].p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_13) (95) [SCAL] (1) fixedMassFlowRate.ports[1].p = volume.ports[1].p ($RES_SIM_131) (96) [SCAL] (1) ambient.ports[1].h_outflow = ambient.medium.h ($RES_SIM_14) (97) [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * shortPipe.flowModel.states.d), -shortPipe.port_b.m_flow / (shortPipe.flowModel.states.d * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_144)