Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater") translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001284/0.001284, allocations: 105.7 kB / 16.42 MB, free: 6.496 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001351/0.001351, allocations: 187.2 kB / 17.35 MB, free: 5.742 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.252/1.252, allocations: 205.1 MB / 223.2 MB, free: 12.24 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo): time 0.176/0.176, allocations: 39.96 MB / 310.6 MB, free: 4.02 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 1.759e-05/1.76e-05, allocations: 6.219 kB / 436.4 MB, free: 11.76 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater): time 0.01318/0.0132, allocations: 16.43 MB / 452.9 MB, free: 11.25 MB / 334.1 MB Notification: Performance of NFInst.instExpressions: time 0.006916/0.02014, allocations: 5.469 MB / 458.3 MB, free: 5.77 MB / 334.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0003793/0.02054, allocations: 19.88 kB / 458.3 MB, free: 5.75 MB / 334.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0007735/0.02132, allocations: 314 kB / 458.7 MB, free: 5.441 MB / 334.1 MB Notification: Performance of NFTyping.typeBindings: time 0.001464/0.0228, allocations: 0.8238 MB / 459.5 MB, free: 4.613 MB / 334.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.002215/0.02508, allocations: 0.9953 MB / 460.5 MB, free: 3.625 MB / 334.1 MB Notification: Performance of NFFlatten.flatten: time 0.001812/0.0269, allocations: 1.851 MB / 462.3 MB, free: 1.77 MB / 334.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0006626/0.02758, allocations: 477.5 kB / 462.8 MB, free: 1.297 MB / 334.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.001088/0.02868, allocations: 0.8487 MB / 463.6 MB, free: 456 kB / 334.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0007306/0.02942, allocations: 0.5839 MB / 464.2 MB, free: 15.86 MB / 350.1 MB Notification: Performance of NFPackage.collectConstants: time 8.768e-05/0.02952, allocations: 56 kB / 464.3 MB, free: 15.8 MB / 350.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.0007296/0.03025, allocations: 347.5 kB / 464.6 MB, free: 15.46 MB / 350.1 MB Notification: Performance of combineBinaries: time 0.001056/0.03132, allocations: 1.289 MB / 465.9 MB, free: 14.16 MB / 350.1 MB Notification: Performance of replaceArrayConstructors: time 0.0005717/0.0319, allocations: 0.8249 MB / 466.7 MB, free: 13.34 MB / 350.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0001297/0.03204, allocations: 115.7 kB / 466.8 MB, free: 13.22 MB / 350.1 MB Notification: Performance of FrontEnd: time 0.0001323/0.03218, allocations: 27.86 kB / 466.9 MB, free: 13.2 MB / 350.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 130 (104) * Number of variables: 134 (104) Notification: Performance of Bindings: time 0.003367/0.03555, allocations: 3.502 MB / 470.4 MB, free: 9.57 MB / 350.1 MB Notification: Performance of FunctionAlias: time 0.0001698/0.03573, allocations: 139.8 kB / 470.5 MB, free: 9.434 MB / 350.1 MB Notification: Performance of Early Inline: time 0.001526/0.03726, allocations: 1.514 MB / 472 MB, free: 7.891 MB / 350.1 MB Notification: Performance of simplify1: time 0.0001069/0.03738, allocations: 99.86 kB / 472.1 MB, free: 7.793 MB / 350.1 MB Notification: Performance of Alias: time 0.001989/0.03938, allocations: 1.794 MB / 473.9 MB, free: 5.793 MB / 350.1 MB Notification: Performance of simplify2: time 0.0001091/0.03949, allocations: 91.86 kB / 474 MB, free: 5.703 MB / 350.1 MB Notification: Performance of Events: time 0.0004224/0.03992, allocations: 319.3 kB / 474.3 MB, free: 5.391 MB / 350.1 MB Notification: Performance of Detect States: time 0.0004891/0.04042, allocations: 477.2 kB / 474.8 MB, free: 4.91 MB / 350.1 MB Notification: Performance of Partitioning: time 0.0008168/0.04125, allocations: 0.7675 MB / 475.5 MB, free: 3.957 MB / 350.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency shortPipe.port_b.m_flow could not be divided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) shortPipe.flowModel.vs = {-(0.0010044335697769957 * shortPipe.port_b.m_flow) / shortPipe.flowModel.crossAreas[1], -(0.0010044335697769957 * shortPipe.port_b.m_flow) / shortPipe.flowModel.crossAreas[2]} / shortPipe.nParallel ($RES_BND_130) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (72/98) ************************** (1) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.T (start = {288.15 for $i1 in 1:2}, min = {1.0 for $i1 in 1:2}, max = {1e4 for $i1 in 1:2}, nominal = {300.0 for $i1 in 1:2}) (2) [ALGB] (1) Real ambient.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (3) [ALGB] (1) Real[1] shortPipe.flowModel.Ib_flows (4) [ALGB] (1) Real ambient.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * ambient.medium.p_bar) (5) [ALGB] (1) Real[1] volume.heatTransfer.Q_flows (6) [ALGB] (1) Real[1] shortPipe.flowModel.Is (7) [ALGB] (2) Real[2] shortPipe.flowModel.mus = {shortPipe.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (8) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.T = {volume.medium.state.T} (start = {288.15 for $i1 in 1:1}, min = {1.0 for $i1 in 1:1}, max = {1e4 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (9) [ALGB] (2) protected Real[2] volume.portsData_height (10) [ALGB] (2) Real[2] shortPipe.flowModel.rhos = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater.shortPipe.flowModel.Medium.density(shortPipe.flowModel.states[$i1]) for $i1 in 1:2} (start = {1.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {1.0 for $i1 in 1:2}) (11) [ALGB] (1) Real ambient.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - ambient.medium.T_degC)) (12) [ALGB] (1) stream Real[1] fixedMassFlowRate.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (13) [DISC] (2) Boolean[2] $SEV_11[$i1] (14) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_fg (15) [ALGB] (1) stream Real shortPipe.port_a.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (16) [ALGB] (2) Real[2] volume.portVelocities (17) [ALGB] (1) Real shortPipe.port_a.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (18) [ALGB] (1) Real[1] volume.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (19) [ALGB] (2) Real[2] volume.vessel_ps_static (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (20) [ALGB] (1) Real[1] shortPipe.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (21) [ALGB] (1) protected Real ambient.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (22) [ALGB] (1) Real[1] shortPipe.flowModel.dps_fg (start = {shortPipe.flowModel.p_a_start - shortPipe.flowModel.p_b_start for $i1 in 1:1}) (23) [ALGB] (1) Real[1] shortPipe.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (24) [ALGB] (1) Real volume.mb_flow (25) [DISC] (2) protected Boolean[2] volume.regularFlow (start = {true for $i1 in 1:2}) (26) [ALGB] (1) stream Real[1] ambient.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (27) [ALGB] (1) Real $FUN_3 (28) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.p = {volume.medium.state.p} (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (29) [ALGB] (1) Real $FUN_2 (30) [ALGB] (1) final Real[1] shortPipe.flowModel.pathLengths = {shortPipe.length} (31) [DISC] (2) Boolean[2] $SEV_9[$i1] (32) [ALGB] (1) flow Real[1] fixedMassFlowRate.ports.m_flow (min = {-1e60}, max = {1e60}) (33) [ALGB] (2) Real[2] volume.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (34) [ALGB] (1) Real[1] fixedMassFlowRate.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (35) [DISC] (2) Boolean[2] $SEV_10[$i1] (36) [ALGB] (1) protected Real ambient.state.T (start = 288.15, min = 1.0, max = 1e4, nominal = 300.0) (37) [ALGB] (2) Real[2] volume.ports_E_flow (38) [DISC] (1) Boolean $SEV_15 (39) [DISC] (1) Boolean $SEV_14 (40) [ALGB] (1) stream Real shortPipe.port_b.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (41) [DISC] (2) Boolean[2] $SEV_13[$i1] (42) [ALGB] (1) final Real[1] shortPipe.flowModel.dheights = {shortPipe.height_ab} (43) [ALGB] (2) Real[2] volume.s (start = {volume.fluidLevel_max for $i1 in 1:2}) (44) [ALGB] (1) Real fixedMassFlowRate.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * fixedMassFlowRate.medium.p_bar) (45) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_p (46) [ALGB] (1) Real volume.medium.state.T (start = 288.15, min = 1.0, max = 1e4, nominal = 300.0) (47) [ALGB] (1) Real volume.Hb_flow (48) [ALGB] (2) flow Real[2] volume.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (49) [DER-] (1) Real $DER.volume.U (50) [ALGB] (2) Real[2] volume.ports.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (51) [ALGB] (2) final Real[2] shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} (52) [DISC] (1) Boolean $SEV_5 (53) [ALGB] (1) flow Real shortPipe.port_b.m_flow (min = -1e5, max = 1e60) (54) [ALGB] (1) Real ambient.medium.state.T (start = 288.15, min = 1.0, max = 1e4, nominal = 300.0) (55) [ALGB] (1) Real shortPipe.port_b.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (56) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (57) [DISC] (1) Boolean $SEV_1 (58) [ALGB] (2) Real[2] shortPipe.flowModel.vs = {(-shortPipe.port_b.m_flow) / (shortPipe.flowModel.crossAreas[1] * ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater.shortPipe.Medium.density(shortPipe.flowModel.states[1])), -shortPipe.port_b.m_flow / (ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater.shortPipe.Medium.density(shortPipe.flowModel.states[2]) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel (59) [ALGB] (1) Real[1] ambient.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (60) [ALGB] (1) Real volume.Qb_flow (61) [ALGB] (1) flow Real[1] ambient.ports.m_flow (min = {-1e60}, max = {1e60}) (62) [DER-] (1) Real $DER.volume.medium.T_degC (63) [DISC] (2) Boolean[2] $SEV_12[$i1] (64) [DER-] (1) Real $DER.volume.m (65) [ALGB] (1) Real volume.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (66) [ALGB] (1) Real volume.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * volume.medium.p_bar) (67) [ALGB] (2) stream Real[2] volume.ports.h_outflow (min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (68) [ALGB] (1) Real[1] volume.heatTransfer.Ts = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater.volume.heatTransfer.Medium.temperature(volume.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (69) [DISC] (2) protected Boolean[2] volume.inFlow (start = {false for $i1 in 1:2}) (70) [ALGB] (1) Real[1] shortPipe.flowModel.rhos_act (start = {1.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (71) [ALGB] (1) Real fixedMassFlowRate.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (72) [ALGB] (1) flow Real[1] volume.heatTransfer.heatPorts.Q_flow System Equations (72/94) ************************** (1) [SCAL] (1) $FUN_2 = sum(volume.ports_H_flow) ($RES_$AUX_144) (2) [SCAL] (1) ambient.ports[1].h_outflow = 4184.0 * ((-273.15) - ((-273.15) - ambient.medium.T_degC)) ($RES_SIM_15) (3) [SCAL] (1) $FUN_3 = sum(volume.ports_E_flow) ($RES_$AUX_143) (4) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.state.T ($RES_SIM_16) (5) [SCAL] (1) -fixedMassFlowRate.m_flow = sum(fixedMassFlowRate.ports.m_flow) ($RES_$AUX_142) (6) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.state.p ($RES_SIM_17) (7) [SCAL] (1) $DER.volume.m = volume.mb_flow ($RES_SIM_53) (8) [SCAL] (1) $DER.volume.U = volume.Qb_flow + volume.Hb_flow ($RES_SIM_54) (9) [SCAL] (1) volume.U = volume.m * (4184.0 * ((-273.15) - ((-273.15) - volume.medium.T_degC))) ($RES_SIM_55) (10) [SCAL] (1) volume.Qb_flow = volume.heatTransfer.Q_flows[1] ($RES_SIM_91) (11) [SCAL] (1) volume.m = 995.586 * volume.V ($RES_SIM_56) (12) [SCAL] (1) volume.Hb_flow = $FUN_2 + $FUN_3 ($RES_SIM_92) (13) [FOR-] (2) ($RES_SIM_57) (13) [----] for $i1 in 1:2 loop (13) [----] [SCAL] (1) volume.portVelocities[$i1] = 0.0 ($RES_SIM_58) (13) [----] end for; (14) [FOR-] (2) ($RES_SIM_94) (14) [----] for $i1 in 1:2 loop (14) [----] [SCAL] (1) volume.vessel_ps_static[$i1] = 99999.99999999999 * volume.medium.p_bar ($RES_SIM_95) (14) [----] end for; (15) [ARRY] (1) volume.heatTransfer.Q_flows = volume.heatTransfer.heatPorts.Q_flow ($RES_SIM_97) (16) [FOR-] (2) ($RES_EVT_170) (16) [----] for $i1 in 1:2 loop (16) [----] [SCAL] (1) $SEV_11[$i1] = volume.portsData_height[$i1] >= volume.fluidLevel_max ($RES_EVT_171) (16) [----] end for; (17) [ARRY] (1) volume.heatTransfer.Ts = volume.heatTransfer.heatPorts.T ($RES_SIM_98) (18) [FOR-] (2) ($RES_EVT_172) (18) [----] for $i1 in 1:2 loop (18) [----] [SCAL] (1) $SEV_12[$i1] = $SEV_10[$i1] or $SEV_11[$i1] ($RES_EVT_173) (18) [----] end for; (19) [FOR-] (2) ($RES_EVT_174) (19) [----] for $i1 in 1:2 loop (19) [----] [SCAL] (1) $SEV_13[$i1] = not volume.regularFlow[$i1] and $SEV_12[$i1] ($RES_EVT_175) (19) [----] end for; (20) [SCAL] (1) $SEV_14 = volume.ports[2].m_flow > 0.0 ($RES_EVT_176) (21) [SCAL] (1) $SEV_15 = volume.ports[1].m_flow > 0.0 ($RES_EVT_177) (22) [SCAL] (1) volume.medium.state.p = 99999.99999999999 * volume.medium.p_bar ($RES_SIM_103) (23) [SCAL] (1) volume.medium.state.T = -((-273.15) - volume.medium.T_degC) ($RES_SIM_104) (24) [SCAL] (1) ambient.medium.state.p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_24) (25) [SCAL] (1) ambient.medium.state.T = -((-273.15) - ambient.medium.T_degC) ($RES_SIM_25) (26) [FOR-] (2) ($RES_SIM_63) (26) [----] for $i1 in 1:2 loop (26) [----] [SCAL] (1) volume.regularFlow[$i1] = $SEV_9[$i1] ($RES_SIM_64) (26) [----] end for; (27) [SCAL] (1) ambient.state.p = ambient.p ($RES_SIM_146) (28) [FOR-] (2) ($RES_SIM_65) (28) [----] for $i1 in 1:2 loop (28) [----] [SCAL] (1) volume.inFlow[$i1] = $SEV_13[$i1] ($RES_SIM_66) (28) [----] end for; (29) [SCAL] (1) ambient.state.T = ambient.T ($RES_SIM_147) (30) [FOR-] (2) ($RES_SIM_67) (30) [----] for $i1 in 1:2 loop (30) [----] [-IF-] (1)if volume.regularFlow[$i1] then (30) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_69) (30) [----] [----] elseif volume.inFlow[$i1] then (30) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_70) (30) [----] [----] else (30) [----] [----] [SCAL] (1) volume.ports[$i1].m_flow = 0.0 ($RES_SIM_71) (30) [----] [----] end if; (30) [----] end for; (31) [ARRY] (1) volume.heatTransfer.Ts = {volume.heatTransfer.states.p} ($RES_BND_122) (32) [SCAL] (1) shortPipe.port_b.m_flow + ambient.ports[1].m_flow = 0.0 ($RES_SIM_111) (33) [SCAL] (1) volume.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_112) (34) [SCAL] (1) volume.ports[2].m_flow - shortPipe.port_b.m_flow = 0.0 ($RES_SIM_113) (35) [SCAL] (1) shortPipe.port_b.p = ambient.ports[1].p ($RES_SIM_114) (36) [SCAL] (1) fixedMassFlowRate.ports[1].p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_32) (37) [SCAL] (1) volume.ports[2].p = shortPipe.port_a.p ($RES_SIM_115) (38) [SCAL] (1) fixedMassFlowRate.ports[1].h_outflow = 4184.0 * ((-273.15) + fixedMassFlowRate.T) ($RES_SIM_33) (39) [SCAL] (1) volume.ports[1].m_flow + fixedMassFlowRate.ports[1].m_flow = 0.0 ($RES_SIM_116) (40) [SCAL] (1) fixedMassFlowRate.ports[1].p = volume.ports[1].p ($RES_SIM_117) (41) [FOR-] (2) ($RES_SIM_72) (41) [----] for $i1 in 1:2 loop (41) [----] [-IF-] (1)if volume.regularFlow[$i1] then (41) [----] [----] [SCAL] (1) volume.s[$i1] = 0.0 - volume.portsData_height[$i1] ($RES_SIM_74) (41) [----] [----] elseif volume.inFlow[$i1] then (41) [----] [----] [SCAL] (1) volume.s[$i1] = volume.ports[$i1].m_flow ($RES_SIM_75) (41) [----] [----] else (41) [----] [----] [SCAL] (1) volume.s[$i1] = ((volume.ports[$i1].p - volume.vessel_ps_static[$i1]) / 101325.0) * (volume.portsData_height[$i1] - 0.0) ($RES_SIM_76) (41) [----] [----] end if; (41) [----] end for; (42) [FOR-] (2) ($RES_SIM_77) (42) [----] for $i1 in 1:2 loop (42) [----] [SCAL] (1) volume.ports[$i1].h_outflow = 4184.0 * ((-273.15) - ((-273.15) - volume.medium.T_degC)) ($RES_SIM_78) (42) [----] end for; (43) [FOR-] (2) ($RES_SIM_79) (43) [----] for $i1 in 1:2 loop (43) [----] [SCAL] (1) volume.ports_E_flow[$i1] = volume.ports[$i1].m_flow * (volume.portVelocities[$i1] * 0.5 * volume.portVelocities[$i1] + system.g * volume.portsData_height[$i1]) ($RES_SIM_80) (43) [----] end for; (44) [SCAL] (1) $SEV_1 = shortPipe.flowModel.m_flows[1] > 0.0 ($RES_EVT_158) (45) [ARRY] (2) shortPipe.flowModel.vs = {-(0.0010044335697769957 * shortPipe.port_b.m_flow) / shortPipe.flowModel.crossAreas[1], -(0.0010044335697769957 * shortPipe.port_b.m_flow) / shortPipe.flowModel.crossAreas[2]} / shortPipe.nParallel ($RES_BND_130) (46) [ARRY] (2) shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} ($RES_BND_131) (47) [ARRY] (1) shortPipe.flowModel.dheights = {shortPipe.height_ab} ($RES_BND_134) (48) [ARRY] (1) shortPipe.flowModel.pathLengths = {shortPipe.length} ($RES_BND_135) (49) [FOR-] (2) ($RES_BND_136) (49) [----] for $i1 in 1:2 loop (49) [----] [SCAL] (1) shortPipe.flowModel.rhos[$i1] = 995.586 ($RES_BND_137) (49) [----] end for; (50) [FOR-] (2) ($RES_BND_138) (50) [----] for $i1 in 1:2 loop (50) [----] [SCAL] (1) shortPipe.flowModel.mus[$i1] = shortPipe.flowModel.mu_nominal ($RES_BND_139) (50) [----] end for; (51) [SCAL] (1) fixedMassFlowRate.medium.state.p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_45) (52) [SCAL] (1) volume.ports_H_flow[2] = smooth(0, volume.ports[2].m_flow * (if $SEV_14 then shortPipe.port_a.h_outflow else volume.ports[2].h_outflow)) ($RES_SIM_81) (53) [SCAL] (1) volume.ports_H_flow[1] = smooth(0, volume.ports[1].m_flow * (if $SEV_15 then fixedMassFlowRate.ports[1].h_outflow else volume.ports[1].h_outflow)) ($RES_SIM_83) (54) [ARRY] (2) volume.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_87) (55) [SCAL] (1) $SEV_5 = abs(sum({abs(fixedMassFlowRate.ports[1].m_flow)}) - abs(fixedMassFlowRate.ports[1].m_flow)) <= 1e-60 ($RES_EVT_162) (56) [ARRY] (1) shortPipe.flowModel.Fs_p = shortPipe.flowModel.nParallel * {0.5 * (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2]) * (shortPipe.flowModel.states.T - shortPipe.flowModel.states.T)} ($RES_SIM_9) (57) [FOR-] (2) ($RES_EVT_166) (57) [----] for $i1 in 1:2 loop (57) [----] [SCAL] (1) $SEV_9[$i1] = 0.0 >= volume.portsData_height[$i1] ($RES_EVT_167) (57) [----] end for; (58) [ARRY] (1) shortPipe.flowModel.dps_fg = {(2.0 * (shortPipe.flowModel.Fs_fg[1] / shortPipe.flowModel.nParallel)) / (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2])} ($RES_SIM_8) (59) [ARRY] (1) shortPipe.flowModel.Is = {shortPipe.flowModel.m_flows[1] * shortPipe.flowModel.pathLengths[1]} ($RES_SIM_7) (60) [FOR-] (2) ($RES_EVT_168) (60) [----] for $i1 in 1:2 loop (60) [----] [SCAL] (1) $SEV_10[$i1] = volume.s[$i1] > 0.0 ($RES_EVT_169) (60) [----] end for; (61) [ARRY] (1) {0.0} = shortPipe.flowModel.Ib_flows - (shortPipe.flowModel.Fs_fg + shortPipe.flowModel.Fs_p) ($RES_SIM_6) (62) [SCAL] (1) -shortPipe.port_b.m_flow = shortPipe.flowModel.m_flows[1] ($RES_SIM_5) (63) [SCAL] (1) shortPipe.port_b.h_outflow = volume.ports[2].h_outflow - system.g * shortPipe.height_ab ($RES_SIM_3) (64) [SCAL] (1) shortPipe.port_a.h_outflow = ambient.ports[1].h_outflow + system.g * shortPipe.height_ab ($RES_SIM_2) (65) [ARRY] (2) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_140) (66) [ARRY] (1) shortPipe.flowModel.Ib_flows = {0.0} ($RES_SIM_10) (67) [ARRY] (4) shortPipe.flowModel.states = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater.shortPipe.Medium.ThermodynamicState(shortPipe.port_a.p, 273.15 + 2.390057361376673e-4 * volume.ports[2].h_outflow), ModelicaTest.Media.TestsWithFluid.MediaTestModels.Water.ConstantPropertyLiquidWater.shortPipe.Medium.ThermodynamicState(shortPipe.port_b.p, 273.15 + 2.390057361376673e-4 * ambient.ports[1].h_outflow)} ($RES_BND_141) (68) [SCAL] (1) shortPipe.flowModel.rhos_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2]) ($RES_SIM_11) (69) [SCAL] (1) shortPipe.flowModel.mus_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.mus[1] else shortPipe.flowModel.mus[2]) ($RES_SIM_12) (70) [ARRY] (1) shortPipe.flowModel.dps_fg = {shortPipe.flowModel.dheights[1] * shortPipe.flowModel.g * (if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2])} + shortPipe.flowModel.dp_nominal / shortPipe.flowModel.m_flow_nominal * shortPipe.flowModel.m_flows ($RES_SIM_13) (71) [SCAL] (1) volume.mb_flow = sum(volume.ports.m_flow) ($RES_$AUX_145) (72) [SCAL] (1) ambient.ports[1].p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_14)