Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir") translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001205/0.001206, allocations: 107.2 kB / 16.42 MB, free: 6.473 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.00125/0.00125, allocations: 187.2 kB / 17.36 MB, free: 5.707 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.328/1.328, allocations: 205.1 MB / 223.2 MB, free: 12.21 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo): time 0.1781/0.1781, allocations: 39.96 MB / 310.5 MB, free: 4.012 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 1.993e-05/1.994e-05, allocations: 6.219 kB / 436.4 MB, free: 11.76 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir): time 0.3392/0.3393, allocations: 147.6 MB / 0.5703 GB, free: 13.27 MB / 414.1 MB Notification: Performance of NFInst.instExpressions: time 0.006336/0.3456, allocations: 5.586 MB / 0.5758 GB, free: 12.19 MB / 414.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.00071/0.3464, allocations: 20.44 kB / 0.5758 GB, free: 12.18 MB / 414.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0009948/0.3474, allocations: 326.7 kB / 0.5761 GB, free: 11.98 MB / 414.1 MB Notification: Performance of NFTyping.typeBindings: time 0.001802/0.3492, allocations: 0.856 MB / 0.5769 GB, free: 11.56 MB / 414.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.002855/0.3521, allocations: 1.029 MB / 0.5779 GB, free: 11.2 MB / 414.1 MB Notification: Performance of NFFlatten.flatten: time 0.00252/0.3547, allocations: 1.859 MB / 0.5798 GB, free: 10.48 MB / 414.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0007698/0.3555, allocations: 482.9 kB / 0.5802 GB, free: 10.18 MB / 414.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.001464/0.3569, allocations: 0.8456 MB / 0.581 GB, free: 9.773 MB / 414.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0008287/0.3578, allocations: 0.6739 MB / 0.5817 GB, free: 9.477 MB / 414.1 MB Notification: Performance of NFPackage.collectConstants: time 8.7e-05/0.3579, allocations: 60.69 kB / 0.5818 GB, free: 9.477 MB / 414.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.001244/0.3592, allocations: 0.5477 MB / 0.5823 GB, free: 9.293 MB / 414.1 MB Notification: Performance of combineBinaries: time 0.0009846/0.3602, allocations: 1.302 MB / 0.5836 GB, free: 8.492 MB / 414.1 MB Notification: Performance of replaceArrayConstructors: time 0.0005744/0.3608, allocations: 0.8196 MB / 0.5844 GB, free: 7.945 MB / 414.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0001578/0.361, allocations: 121.3 kB / 0.5845 GB, free: 7.891 MB / 414.1 MB Notification: Performance of FrontEnd: time 0.0001339/0.3611, allocations: 27.16 kB / 0.5845 GB, free: 7.879 MB / 414.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 130 (104) * Number of variables: 134 (104) Notification: Performance of Bindings: time 0.0032/0.3643, allocations: 3.519 MB / 0.5879 GB, free: 4.828 MB / 414.1 MB Notification: Performance of FunctionAlias: time 0.0001811/0.3645, allocations: 149.2 kB / 0.5881 GB, free: 4.691 MB / 414.1 MB Notification: Performance of Early Inline: time 0.001639/0.3662, allocations: 1.656 MB / 0.5897 GB, free: 3.039 MB / 414.1 MB Notification: Performance of simplify1: time 0.0001559/0.3663, allocations: 114 kB / 0.5898 GB, free: 2.934 MB / 414.1 MB Notification: Performance of Alias: time 0.001942/0.3683, allocations: 1.682 MB / 0.5915 GB, free: 1.09 MB / 414.1 MB Notification: Performance of simplify2: time 0.00018/0.3685, allocations: 105.4 kB / 0.5916 GB, free: 0.9922 MB / 414.1 MB Notification: Performance of Events: time 0.0004371/0.3689, allocations: 345.6 kB / 0.5919 GB, free: 0.6719 MB / 414.1 MB Notification: Performance of Detect States: time 0.0005491/0.3695, allocations: 0.5016 MB / 0.5924 GB, free: 168 kB / 414.1 MB Notification: Performance of Partitioning: time 0.0008638/0.3703, allocations: 0.8379 MB / 0.5932 GB, free: 15.15 MB / 430.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency shortPipe.port_b.m_flow could not be divided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * ((0.003483703884165752 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p)), -shortPipe.port_b.m_flow / (((0.003483703884165752 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_131) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (78/105) *************************** (1) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.T (start = {288.15 for $i1 in 1:2}, min = {273.15 for $states1 in 1:2}, max = {373.15 for $states1 in 1:2}, nominal = {300.0 for $i1 in 1:2}) (2) [ALGB] (1) Real ambient.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (3) [ALGB] (1) Real[1] shortPipe.flowModel.Ib_flows (4) [ALGB] (1) Real fixedMassFlowRate.medium.d (start = 1.0, min = 0.0, max = 1e5, nominal = 1.0) (5) [ALGB] (1) Real ambient.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * ambient.medium.p_bar) (6) [ALGB] (1) Real[1] volume.heatTransfer.Q_flows (7) [ALGB] (1) Real[1] shortPipe.flowModel.Is (8) [ALGB] (2) Real[2] volume.portInDensities (start = {1.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {1.0 for $i1 in 1:2}) (9) [ALGB] (2) Real[2] shortPipe.flowModel.mus = {shortPipe.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (10) [DER-] (1) Real $DER.volume.medium.p_bar (11) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.T = {volume.medium.state.T} (start = {288.15 for $i1 in 1:1}, min = {273.15}, max = {373.15}, nominal = {300.0 for $i1 in 1:1}) (12) [ALGB] (2) protected Real[2] volume.portsData_height (13) [ALGB] (2) Real[2] shortPipe.flowModel.rhos = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir.shortPipe.flowModel.Medium.density(shortPipe.flowModel.states[$i1]) for $i1 in 1:2} (start = {1.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {1.0 for $i1 in 1:2}) (14) [ALGB] (1) Real ambient.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - ambient.medium.T_degC)) (15) [ALGB] (1) stream Real[1] fixedMassFlowRate.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (16) [DISC] (2) Boolean[2] $SEV_11[$i1] (17) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_fg (18) [ALGB] (1) stream Real shortPipe.port_a.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (19) [ALGB] (2) Real[2] volume.portVelocities (20) [ALGB] (1) Real shortPipe.port_a.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (21) [ALGB] (1) Real[1] volume.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (22) [ALGB] (2) Real[2] volume.vessel_ps_static (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (23) [ALGB] (1) Real[1] shortPipe.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (24) [ALGB] (1) protected Real ambient.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (25) [ALGB] (1) Real[1] shortPipe.flowModel.dps_fg (start = {shortPipe.flowModel.p_a_start - shortPipe.flowModel.p_b_start for $i1 in 1:1}) (26) [ALGB] (1) Real[1] shortPipe.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (27) [ALGB] (1) Real volume.mb_flow (28) [DISC] (2) protected Boolean[2] volume.regularFlow (start = {true for $i1 in 1:2}) (29) [ALGB] (1) stream Real[1] ambient.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (30) [ALGB] (1) Real $FUN_3 (31) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.p = {volume.medium.state.p} (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (32) [ALGB] (1) Real $FUN_2 (33) [ALGB] (1) final Real[1] shortPipe.flowModel.pathLengths = {shortPipe.length} (34) [DISC] (2) Boolean[2] $SEV_9[$i1] (35) [ALGB] (1) flow Real[1] fixedMassFlowRate.ports.m_flow (min = {-1e60}, max = {1e60}) (36) [ALGB] (2) Real[2] volume.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (37) [ALGB] (1) Real[1] fixedMassFlowRate.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (38) [DISC] (2) Boolean[2] $SEV_10[$i1] (39) [ALGB] (1) protected Real ambient.state.T (start = 288.15, min = 273.15, max = 373.15, nominal = 300.0) (40) [ALGB] (2) Real[2] volume.ports_E_flow (41) [DISC] (1) Boolean $SEV_15 (42) [ALGB] (1) stream Real shortPipe.port_b.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (43) [DISC] (1) Boolean $SEV_14 (44) [DISC] (2) Boolean[2] $SEV_13[$i1] (45) [ALGB] (1) final Real[1] shortPipe.flowModel.dheights = {shortPipe.height_ab} (46) [ALGB] (2) Real[2] volume.s (start = {volume.fluidLevel_max for $i1 in 1:2}) (47) [ALGB] (1) Real fixedMassFlowRate.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * fixedMassFlowRate.medium.p_bar) (48) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_p (49) [ALGB] (1) Real volume.medium.state.T (start = 288.15, min = 273.15, max = 373.15, nominal = 300.0) (50) [ALGB] (1) Real volume.Hb_flow (51) [ALGB] (2) flow Real[2] volume.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (52) [DER-] (1) Real $DER.volume.U (53) [ALGB] (1) Real volume.medium.d (start = 1.0, min = 0.0, max = 1e5, nominal = 1.0) (54) [ALGB] (2) Real[2] volume.ports.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (55) [ALGB] (2) final Real[2] shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} (56) [DISC] (1) Boolean $SEV_5 (57) [ALGB] (1) flow Real shortPipe.port_b.m_flow (min = -1e5, max = 1e60) (58) [ALGB] (1) Real ambient.medium.state.T (start = 288.15, min = 273.15, max = 373.15, nominal = 300.0) (59) [ALGB] (1) Real shortPipe.port_b.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (60) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (61) [DISC] (1) Boolean $SEV_1 (62) [ALGB] (2) Real[2] shortPipe.flowModel.vs = {(-shortPipe.port_b.m_flow) / (shortPipe.flowModel.crossAreas[1] * ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir.shortPipe.Medium.density(shortPipe.flowModel.states[1])), -shortPipe.port_b.m_flow / (ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir.shortPipe.Medium.density(shortPipe.flowModel.states[2]) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel (63) [ALGB] (1) Real[1] ambient.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (64) [ALGB] (1) Real volume.Qb_flow (65) [ALGB] (1) Real ambient.medium.d (start = 1.0, min = 0.0, max = 1e5, nominal = 1.0) (66) [ALGB] (1) flow Real[1] ambient.ports.m_flow (min = {-1e60}, max = {1e60}) (67) [ALGB] (1) Real volume.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (68) [DER-] (1) Real $DER.volume.medium.T_degC (69) [DISC] (2) Boolean[2] $SEV_12[$i1] (70) [DER-] (1) Real $DER.volume.m (71) [ALGB] (1) Real volume.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (72) [ALGB] (2) stream Real[2] volume.ports.h_outflow (min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (73) [ALGB] (1) Real[1] volume.heatTransfer.Ts = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir.volume.heatTransfer.Medium.temperature(volume.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (74) [DISC] (2) protected Boolean[2] volume.inFlow (start = {false for $i1 in 1:2}) (75) [ALGB] (1) Real[1] shortPipe.flowModel.rhos_act (start = {1.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (76) [ALGB] (1) Real fixedMassFlowRate.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (77) [ALGB] (1) Real ambient.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (78) [ALGB] (1) flow Real[1] volume.heatTransfer.heatPorts.Q_flow System Equations (79/101) *************************** (1) [SCAL] (1) ambient.ports[1].p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_15) (2) [SCAL] (1) $FUN_3 = sum(volume.ports_E_flow) ($RES_$AUX_144) (3) [SCAL] (1) ambient.ports[1].h_outflow = 1005.45 * ((-298.15) - ((-273.15) - ambient.medium.T_degC)) ($RES_SIM_16) (4) [SCAL] (1) -fixedMassFlowRate.m_flow = sum(fixedMassFlowRate.ports.m_flow) ($RES_$AUX_143) (5) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.state.T ($RES_SIM_17) (6) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.state.p ($RES_SIM_18) (7) [SCAL] (1) $DER.volume.m = volume.mb_flow ($RES_SIM_54) (8) [SCAL] (1) $DER.volume.U = volume.Qb_flow + volume.Hb_flow ($RES_SIM_55) (9) [SCAL] (1) volume.U = volume.m * volume.medium.u ($RES_SIM_56) (10) [SCAL] (1) volume.Qb_flow = volume.heatTransfer.Q_flows[1] ($RES_SIM_92) (11) [SCAL] (1) volume.m = volume.V * volume.medium.d ($RES_SIM_57) (12) [SCAL] (1) volume.Hb_flow = $FUN_2 + $FUN_3 ($RES_SIM_93) (13) [FOR-] (2) ($RES_SIM_58) (13) [----] for $i1 in 1:2 loop (13) [----] [SCAL] (1) volume.portVelocities[$i1] = 0.0 ($RES_SIM_59) (13) [----] end for; (14) [FOR-] (2) ($RES_SIM_95) (14) [----] for $i1 in 1:2 loop (14) [----] [SCAL] (1) volume.vessel_ps_static[$i1] = 99999.99999999999 * volume.medium.p_bar ($RES_SIM_96) (14) [----] end for; (15) [ARRY] (1) volume.heatTransfer.Q_flows = volume.heatTransfer.heatPorts.Q_flow ($RES_SIM_98) (16) [FOR-] (2) ($RES_EVT_171) (16) [----] for $i1 in 1:2 loop (16) [----] [SCAL] (1) $SEV_12[$i1] = $SEV_10[$i1] or $SEV_11[$i1] ($RES_EVT_172) (16) [----] end for; (17) [ARRY] (1) volume.heatTransfer.Ts = volume.heatTransfer.heatPorts.T ($RES_SIM_99) (18) [FOR-] (2) ($RES_EVT_173) (18) [----] for $i1 in 1:2 loop (18) [----] [SCAL] (1) $SEV_13[$i1] = not volume.regularFlow[$i1] and $SEV_12[$i1] ($RES_EVT_174) (18) [----] end for; (19) [SCAL] (1) $SEV_14 = volume.ports[2].m_flow > 0.0 ($RES_EVT_175) (20) [SCAL] (1) $SEV_15 = volume.ports[1].m_flow > 0.0 ($RES_EVT_176) (21) [SCAL] (1) volume.medium.state.p = 99999.99999999999 * volume.medium.p_bar ($RES_SIM_104) (22) [SCAL] (1) volume.medium.state.T = -((-273.15) - volume.medium.T_degC) ($RES_SIM_105) (23) [SCAL] (1) ambient.medium.state.p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_25) (24) [SCAL] (1) volume.medium.d = -(0.003483703884165752 * (99999.99999999999 * volume.medium.p_bar)) / ((-273.15) - volume.medium.T_degC) ($RES_SIM_107) (25) [SCAL] (1) ambient.medium.state.T = -((-273.15) - ambient.medium.T_degC) ($RES_SIM_26) (26) [SCAL] (1) volume.medium.u = 287.0508037566665 * ((-273.15) - volume.medium.T_degC) + 1005.45 * ((-298.15) - ((-273.15) - volume.medium.T_degC)) ($RES_SIM_109) (27) [SCAL] (1) ambient.medium.d = -(0.003483703884165752 * (99999.99999999999 * ambient.medium.p_bar)) / ((-273.15) - ambient.medium.T_degC) ($RES_SIM_28) (28) [FOR-] (2) ($RES_SIM_64) (28) [----] for $i1 in 1:2 loop (28) [----] [SCAL] (1) volume.regularFlow[$i1] = $SEV_9[$i1] ($RES_SIM_65) (28) [----] end for; (29) [SCAL] (1) ambient.state.p = ambient.p ($RES_SIM_147) (30) [FOR-] (2) ($RES_SIM_66) (30) [----] for $i1 in 1:2 loop (30) [----] [SCAL] (1) volume.inFlow[$i1] = $SEV_13[$i1] ($RES_SIM_67) (30) [----] end for; (31) [SCAL] (1) ambient.state.T = ambient.T ($RES_SIM_148) (32) [FOR-] (2) ($RES_SIM_68) (32) [----] for $i1 in 1:2 loop (32) [----] [-IF-] (1)if volume.regularFlow[$i1] then (32) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_70) (32) [----] [----] elseif volume.inFlow[$i1] then (32) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_71) (32) [----] [----] else (32) [----] [----] [SCAL] (1) volume.ports[$i1].m_flow = 0.0 ($RES_SIM_72) (32) [----] [----] end if; (32) [----] end for; (33) [ARRY] (1) volume.heatTransfer.Ts = {volume.heatTransfer.states.p} ($RES_BND_123) (34) [SCAL] (1) shortPipe.port_b.m_flow + ambient.ports[1].m_flow = 0.0 ($RES_SIM_112) (35) [SCAL] (1) ambient.medium.u = 287.0508037566665 * ((-273.15) - ambient.medium.T_degC) + 1005.45 * ((-298.15) - ((-273.15) - ambient.medium.T_degC)) ($RES_SIM_30) (36) [SCAL] (1) volume.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_113) (37) [SCAL] (1) volume.ports[2].m_flow - shortPipe.port_b.m_flow = 0.0 ($RES_SIM_114) (38) [SCAL] (1) shortPipe.port_b.p = ambient.ports[1].p ($RES_SIM_115) (39) [SCAL] (1) fixedMassFlowRate.ports[1].p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_33) (40) [SCAL] (1) volume.ports[2].p = shortPipe.port_a.p ($RES_SIM_116) (41) [SCAL] (1) fixedMassFlowRate.ports[1].h_outflow = 1005.45 * ((-298.15) + fixedMassFlowRate.T) ($RES_SIM_34) (42) [SCAL] (1) volume.ports[1].m_flow + fixedMassFlowRate.ports[1].m_flow = 0.0 ($RES_SIM_117) (43) [SCAL] (1) fixedMassFlowRate.ports[1].p = volume.ports[1].p ($RES_SIM_118) (44) [FOR-] (2) ($RES_SIM_73) (44) [----] for $i1 in 1:2 loop (44) [----] [-IF-] (1)if volume.regularFlow[$i1] then (44) [----] [----] [SCAL] (1) volume.s[$i1] = 0.0 - volume.portsData_height[$i1] ($RES_SIM_75) (44) [----] [----] elseif volume.inFlow[$i1] then (44) [----] [----] [SCAL] (1) volume.s[$i1] = volume.ports[$i1].m_flow ($RES_SIM_76) (44) [----] [----] else (44) [----] [----] [SCAL] (1) volume.s[$i1] = ((volume.ports[$i1].p - volume.vessel_ps_static[$i1]) / 101325.0) * (volume.portsData_height[$i1] - 0.0) ($RES_SIM_77) (44) [----] [----] end if; (44) [----] end for; (45) [FOR-] (2) ($RES_SIM_78) (45) [----] for $i1 in 1:2 loop (45) [----] [SCAL] (1) volume.ports[$i1].h_outflow = 1005.45 * ((-298.15) - ((-273.15) - volume.medium.T_degC)) ($RES_SIM_79) (45) [----] end for; (46) [SCAL] (1) $SEV_1 = shortPipe.flowModel.m_flows[1] > 0.0 ($RES_EVT_157) (47) [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * ((0.003483703884165752 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p)), -shortPipe.port_b.m_flow / (((0.003483703884165752 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_131) (48) [ARRY] (2) shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} ($RES_BND_132) (49) [ARRY] (1) shortPipe.flowModel.dheights = {shortPipe.height_ab} ($RES_BND_135) (50) [ARRY] (1) shortPipe.flowModel.pathLengths = {shortPipe.length} ($RES_BND_136) (51) [FOR-] (2) ($RES_BND_137) (51) [----] for $i1 in 1:2 loop (51) [----] [SCAL] (1) shortPipe.flowModel.rhos[$i1] = (0.003483703884165752 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p ($RES_BND_138) (51) [----] end for; (52) [FOR-] (2) ($RES_BND_139) (52) [----] for $i1 in 1:2 loop (52) [----] [SCAL] (1) shortPipe.flowModel.mus[$i1] = shortPipe.flowModel.mu_nominal ($RES_BND_140) (52) [----] end for; (53) [FOR-] (2) ($RES_SIM_80) (53) [----] for $i1 in 1:2 loop (53) [----] [SCAL] (1) volume.ports_E_flow[$i1] = volume.ports[$i1].m_flow * (volume.portVelocities[$i1] * 0.5 * volume.portVelocities[$i1] + system.g * volume.portsData_height[$i1]) ($RES_SIM_81) (53) [----] end for; (54) [SCAL] (1) fixedMassFlowRate.medium.state.p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_46) (55) [SCAL] (1) volume.ports_H_flow[2] = smooth(0, volume.ports[2].m_flow * (if $SEV_14 then shortPipe.port_a.h_outflow else volume.ports[2].h_outflow)) ($RES_SIM_82) (56) [SCAL] (1) volume.portInDensities[2] = (0.003483703884165752 * volume.vessel_ps_static[2]) / (298.15 + 9.945795414988312e-4 * shortPipe.port_a.h_outflow) ($RES_SIM_83) (57) [SCAL] (1) volume.ports_H_flow[1] = smooth(0, volume.ports[1].m_flow * (if $SEV_15 then fixedMassFlowRate.ports[1].h_outflow else volume.ports[1].h_outflow)) ($RES_SIM_84) (58) [SCAL] (1) fixedMassFlowRate.medium.d = (0.003483703884165752 * (99999.99999999999 * fixedMassFlowRate.medium.p_bar)) / fixedMassFlowRate.T ($RES_SIM_49) (59) [SCAL] (1) volume.portInDensities[1] = (0.003483703884165752 * volume.vessel_ps_static[1]) / (298.15 + 9.945795414988312e-4 * fixedMassFlowRate.ports[1].h_outflow) ($RES_SIM_85) (60) [ARRY] (2) volume.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_88) (61) [SCAL] (1) $SEV_5 = abs(sum({abs(fixedMassFlowRate.ports[1].m_flow)}) - abs(fixedMassFlowRate.ports[1].m_flow)) <= 1e-60 ($RES_EVT_161) (62) [FOR-] (2) ($RES_EVT_165) (62) [----] for $i1 in 1:2 loop (62) [----] [SCAL] (1) $SEV_9[$i1] = 0.0 >= volume.portsData_height[$i1] ($RES_EVT_166) (62) [----] end for; (63) [ARRY] (1) shortPipe.flowModel.dps_fg = {(2.0 * (shortPipe.flowModel.Fs_fg[1] / shortPipe.flowModel.nParallel)) / (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2])} ($RES_SIM_9) (64) [ARRY] (1) shortPipe.flowModel.Is = {shortPipe.flowModel.m_flows[1] * shortPipe.flowModel.pathLengths[1]} ($RES_SIM_8) (65) [FOR-] (2) ($RES_EVT_167) (65) [----] for $i1 in 1:2 loop (65) [----] [SCAL] (1) $SEV_10[$i1] = volume.s[$i1] > 0.0 ($RES_EVT_168) (65) [----] end for; (66) [ARRY] (1) {0.0} = shortPipe.flowModel.Ib_flows - (shortPipe.flowModel.Fs_fg + shortPipe.flowModel.Fs_p) ($RES_SIM_7) (67) [SCAL] (1) -shortPipe.port_b.m_flow = shortPipe.flowModel.m_flows[1] ($RES_SIM_6) (68) [FOR-] (2) ($RES_EVT_169) (68) [----] for $i1 in 1:2 loop (68) [----] [SCAL] (1) $SEV_11[$i1] = volume.portsData_height[$i1] >= volume.fluidLevel_max ($RES_EVT_170) (68) [----] end for; (69) [SCAL] (1) shortPipe.port_b.h_outflow = volume.ports[2].h_outflow - system.g * shortPipe.height_ab ($RES_SIM_4) (70) [SCAL] (1) shortPipe.port_a.h_outflow = ambient.ports[1].h_outflow + system.g * shortPipe.height_ab ($RES_SIM_3) (71) [ARRY] (1) shortPipe.flowModel.Fs_p = shortPipe.flowModel.nParallel * {0.5 * (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2]) * (shortPipe.flowModel.states.T - shortPipe.flowModel.states.T)} ($RES_SIM_10) (72) [ARRY] (1) shortPipe.flowModel.Ib_flows = {0.0} ($RES_SIM_11) (73) [ARRY] (2) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_141) (74) [SCAL] (1) shortPipe.flowModel.rhos_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2]) ($RES_SIM_12) (75) [ARRY] (4) shortPipe.flowModel.states = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir.shortPipe.Medium.ThermodynamicState(shortPipe.port_a.p, 298.15 + 9.945795414988312e-4 * volume.ports[2].h_outflow), ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.SimpleAir.shortPipe.Medium.ThermodynamicState(shortPipe.port_b.p, 298.15 + 9.945795414988312e-4 * ambient.ports[1].h_outflow)} ($RES_BND_142) (76) [SCAL] (1) shortPipe.flowModel.mus_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.mus[1] else shortPipe.flowModel.mus[2]) ($RES_SIM_13) (77) [SCAL] (1) volume.mb_flow = sum(volume.ports.m_flow) ($RES_$AUX_146) (78) [ARRY] (1) shortPipe.flowModel.dps_fg = {shortPipe.flowModel.dheights[1] * shortPipe.flowModel.g * (if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2])} + shortPipe.flowModel.dp_nominal / shortPipe.flowModel.m_flow_nominal * shortPipe.flowModel.m_flows ($RES_SIM_14) (79) [SCAL] (1) $FUN_2 = sum(volume.ports_H_flow) ($RES_$AUX_145)