Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa") translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001217/0.001217, allocations: 107.3 kB / 16.42 MB, free: 5.973 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001197/0.001197, allocations: 189 kB / 17.36 MB, free: 5.566 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.309/1.309, allocations: 205.1 MB / 223.2 MB, free: 12.24 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo): time 0.178/0.178, allocations: 39.96 MB / 310.5 MB, free: 4.016 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.242e-05/2.243e-05, allocations: 2.281 kB / 436.4 MB, free: 11.77 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa): time 0.3729/0.3729, allocations: 179.7 MB / 0.6017 GB, free: 11.98 MB / 430.1 MB Notification: Performance of NFInst.instExpressions: time 0.009734/0.3827, allocations: 8.179 MB / 0.6097 GB, free: 3.781 MB / 430.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0006332/0.3834, allocations: 19.88 kB / 0.6097 GB, free: 3.762 MB / 430.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0009522/0.3843, allocations: 317.9 kB / 0.61 GB, free: 3.449 MB / 430.1 MB Notification: Performance of NFTyping.typeBindings: time 0.003402/0.3878, allocations: 1.487 MB / 0.6114 GB, free: 1.969 MB / 430.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.00242/0.3903, allocations: 1.141 MB / 0.6126 GB, free: 0.8398 MB / 430.1 MB Notification: Performance of NFFlatten.flatten: time 0.001797/0.3921, allocations: 1.91 MB / 0.6144 GB, free: 14.93 MB / 446.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0005976/0.3927, allocations: 486.1 kB / 0.6149 GB, free: 14.45 MB / 446.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.002275/0.395, allocations: 1.321 MB / 0.6162 GB, free: 13.13 MB / 446.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0007199/0.3957, allocations: 0.6385 MB / 0.6168 GB, free: 12.49 MB / 446.1 MB Notification: Performance of NFPackage.collectConstants: time 8.785e-05/0.3958, allocations: 56 kB / 0.6169 GB, free: 12.43 MB / 446.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.001523/0.3973, allocations: 0.8387 MB / 0.6177 GB, free: 11.59 MB / 446.1 MB Notification: Performance of combineBinaries: time 0.0009738/0.3983, allocations: 1.296 MB / 0.6189 GB, free: 10.29 MB / 446.1 MB Notification: Performance of replaceArrayConstructors: time 0.0005142/0.3988, allocations: 0.8299 MB / 0.6197 GB, free: 9.445 MB / 446.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0001462/0.399, allocations: 127.6 kB / 0.6199 GB, free: 9.32 MB / 446.1 MB Notification: Performance of FrontEnd: time 0.0001203/0.3991, allocations: 15.94 kB / 0.6199 GB, free: 9.305 MB / 446.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 130 (104) * Number of variables: 134 (104) Notification: Performance of Bindings: time 0.003093/0.4022, allocations: 3.516 MB / 0.6233 GB, free: 5.664 MB / 446.1 MB Notification: Performance of FunctionAlias: time 0.0001659/0.4024, allocations: 155.6 kB / 0.6235 GB, free: 5.512 MB / 446.1 MB Notification: Performance of Early Inline: time 0.001538/0.4039, allocations: 1.654 MB / 0.6251 GB, free: 3.828 MB / 446.1 MB Notification: Performance of simplify1: time 0.0001241/0.4041, allocations: 115.8 kB / 0.6252 GB, free: 3.715 MB / 446.1 MB Notification: Performance of Alias: time 0.001699/0.4058, allocations: 1.616 MB / 0.6268 GB, free: 1.922 MB / 446.1 MB Notification: Performance of simplify2: time 0.0001117/0.4059, allocations: 111.8 kB / 0.6269 GB, free: 1.812 MB / 446.1 MB Notification: Performance of Events: time 0.0004322/0.4063, allocations: 335.3 kB / 0.6272 GB, free: 1.484 MB / 446.1 MB Notification: Performance of Detect States: time 0.0005787/0.4069, allocations: 0.5187 MB / 0.6277 GB, free: 0.9492 MB / 446.1 MB Notification: Performance of Partitioning: time 0.0008213/0.4078, allocations: 0.8336 MB / 0.6285 GB, free: 15.94 MB / 462.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency shortPipe.port_b.m_flow could not be divided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * ((0.0034836987724536205 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p)), -shortPipe.port_b.m_flow / (((0.0034836987724536205 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_131) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (82/109) *************************** (1) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.T (start = {500.0 for $i1 in 1:2}, min = {200.0 for $i1 in 1:2}, max = {6000.0 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (2) [ALGB] (1) Real ambient.medium.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (3) [ALGB] (1) Real fixedMassFlowRate.medium.h (4) [ALGB] (1) Real[1] shortPipe.flowModel.Ib_flows (5) [ALGB] (1) Real fixedMassFlowRate.medium.d (start = 10.0, min = 0.0, max = 1e5, nominal = 10.0) (6) [ALGB] (1) Real ambient.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * ambient.medium.p_bar) (7) [ALGB] (1) Real[1] volume.heatTransfer.Q_flows (8) [ALGB] (1) Real[1] shortPipe.flowModel.Is (9) [ALGB] (2) Real[2] volume.portInDensities (start = {10.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {10.0 for $i1 in 1:2}) (10) [ALGB] (2) Real[2] shortPipe.flowModel.mus = {shortPipe.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (11) [DER-] (1) Real $DER.volume.medium.p_bar (12) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.T = {volume.medium.state.T} (start = {500.0 for $i1 in 1:1}, min = {200.0 for $i1 in 1:1}, max = {6000.0 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (13) [ALGB] (2) protected Real[2] volume.portsData_height (14) [ALGB] (2) Real[2] shortPipe.flowModel.rhos = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.shortPipe.flowModel.Medium.density(shortPipe.flowModel.states[$i1]) for $i1 in 1:2} (start = {10.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {10.0 for $i1 in 1:2}) (15) [ALGB] (1) Real ambient.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - ambient.medium.T_degC)) (16) [ALGB] (1) stream Real[1] fixedMassFlowRate.ports.h_outflow (start = {298609.6803431054}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (17) [DISC] (2) Boolean[2] $SEV_11[$i1] (18) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_fg (19) [ALGB] (1) stream Real shortPipe.port_a.h_outflow (start = 298609.6803431054, min = -1e10, max = 1e10, nominal = 1e5) (20) [ALGB] (2) Real[2] volume.portVelocities (21) [ALGB] (1) Real shortPipe.port_a.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (22) [ALGB] (1) Real[1] volume.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (23) [ALGB] (2) Real[2] volume.vessel_ps_static (start = {1e6 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (24) [ALGB] (1) Real[1] shortPipe.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (25) [ALGB] (1) protected Real ambient.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (26) [ALGB] (1) Real[1] shortPipe.flowModel.dps_fg (start = {shortPipe.flowModel.p_a_start - shortPipe.flowModel.p_b_start for $i1 in 1:1}) (27) [ALGB] (1) Real[1] shortPipe.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (28) [ALGB] (1) Real volume.mb_flow (29) [DISC] (2) protected Boolean[2] volume.regularFlow (start = {true for $i1 in 1:2}) (30) [ALGB] (1) stream Real[1] ambient.ports.h_outflow (start = {298609.6803431054}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (31) [ALGB] (1) Real $FUN_3 (32) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.p = {volume.medium.state.p} (start = {1e6 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (33) [ALGB] (1) Real $FUN_2 (34) [ALGB] (1) final Real[1] shortPipe.flowModel.pathLengths = {shortPipe.length} (35) [DISC] (2) Boolean[2] $SEV_9[$i1] (36) [ALGB] (1) flow Real[1] fixedMassFlowRate.ports.m_flow (min = {-1e60}, max = {1e60}) (37) [ALGB] (2) Real[2] volume.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (38) [ALGB] (1) Real[1] fixedMassFlowRate.ports.p (start = {1e6 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (39) [DISC] (2) Boolean[2] $SEV_10[$i1] (40) [ALGB] (1) protected Real ambient.state.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (41) [ALGB] (2) Real[2] volume.ports_E_flow (42) [DISC] (1) Boolean $SEV_15 (43) [ALGB] (1) stream Real shortPipe.port_b.h_outflow (start = 298609.6803431054, min = -1e10, max = 1e10, nominal = 1e5) (44) [DISC] (1) Boolean $SEV_14 (45) [DISC] (2) Boolean[2] $SEV_13[$i1] (46) [ALGB] (1) final Real[1] shortPipe.flowModel.dheights = {shortPipe.height_ab} (47) [ALGB] (2) Real[2] volume.s (start = {volume.fluidLevel_max for $i1 in 1:2}) (48) [ALGB] (1) Real fixedMassFlowRate.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * fixedMassFlowRate.medium.p_bar) (49) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_p (50) [ALGB] (1) Real volume.medium.state.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (51) [ALGB] (1) Real volume.Hb_flow (52) [ALGB] (2) flow Real[2] volume.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (53) [DER-] (1) Real $DER.volume.U (54) [ALGB] (1) Real volume.medium.d (start = 10.0, min = 0.0, max = 1e5, nominal = 10.0) (55) [ALGB] (2) Real[2] volume.ports.p (start = {1e6 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (56) [ALGB] (2) final Real[2] shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} (57) [ALGB] (1) Real volume.medium.h (start = volume.h_start) (58) [DISC] (1) Boolean $SEV_5 (59) [ALGB] (1) flow Real shortPipe.port_b.m_flow (min = -1e5, max = 1e60) (60) [ALGB] (1) Real ambient.medium.state.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (61) [ALGB] (1) Real shortPipe.port_b.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (62) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.p (start = {1e6 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (63) [DISC] (1) Boolean $SEV_1 (64) [ALGB] (2) Real[2] shortPipe.flowModel.vs = {(-shortPipe.port_b.m_flow) / (shortPipe.flowModel.crossAreas[1] * ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.shortPipe.Medium.density(shortPipe.flowModel.states[1])), -shortPipe.port_b.m_flow / (ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.shortPipe.Medium.density(shortPipe.flowModel.states[2]) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel (65) [ALGB] (1) Real[1] ambient.ports.p (start = {1e6 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (66) [ALGB] (1) Real volume.Qb_flow (67) [ALGB] (1) Real ambient.medium.d (start = 10.0, min = 0.0, max = 1e5, nominal = 10.0) (68) [ALGB] (1) flow Real[1] ambient.ports.m_flow (min = {-1e60}, max = {1e60}) (69) [ALGB] (1) Real volume.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (70) [DER-] (1) Real $DER.volume.medium.T_degC (71) [ALGB] (1) Real ambient.medium.h (72) [DISC] (2) Boolean[2] $SEV_12[$i1] (73) [DER-] (1) Real $DER.volume.m (74) [ALGB] (1) Real volume.medium.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (75) [ALGB] (1) Real fixedMassFlowRate.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (76) [ALGB] (2) stream Real[2] volume.ports.h_outflow (start = {298609.6803431054 for $ports1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (77) [ALGB] (1) Real[1] volume.heatTransfer.Ts = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.volume.heatTransfer.Medium.temperature(volume.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (78) [DISC] (2) protected Boolean[2] volume.inFlow (start = {false for $i1 in 1:2}) (79) [ALGB] (1) Real[1] shortPipe.flowModel.rhos_act (start = {10.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {10.0 for $i1 in 1:1}) (80) [ALGB] (1) Real fixedMassFlowRate.medium.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (81) [ALGB] (1) Real ambient.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (82) [ALGB] (1) flow Real[1] volume.heatTransfer.heatPorts.Q_flow System Equations (83/105) *************************** (1) [SCAL] (1) fixedMassFlowRate.medium.h = Modelica.Media.IdealGases.Common.Functions.h_T(Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), fixedMassFlowRate.T, true, Modelica.Media.Interfaces.Choices.ReferenceEnthalpy.ZeroAt0K, 0.0) ($RES_SIM_50) (2) [SCAL] (1) ambient.ports[1].p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_15) (3) [SCAL] (1) $FUN_3 = sum(volume.ports_E_flow) ($RES_$AUX_144) (4) [SCAL] (1) ambient.ports[1].h_outflow = ambient.medium.h ($RES_SIM_16) (5) [SCAL] (1) -fixedMassFlowRate.m_flow = sum(fixedMassFlowRate.ports.m_flow) ($RES_$AUX_143) (6) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.state.T ($RES_SIM_17) (7) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.state.p ($RES_SIM_18) (8) [SCAL] (1) $DER.volume.m = volume.mb_flow ($RES_SIM_54) (9) [SCAL] (1) $DER.volume.U = volume.Qb_flow + volume.Hb_flow ($RES_SIM_55) (10) [SCAL] (1) volume.U = volume.m * volume.medium.u ($RES_SIM_56) (11) [SCAL] (1) volume.Qb_flow = volume.heatTransfer.Q_flows[1] ($RES_SIM_92) (12) [SCAL] (1) volume.m = volume.V * volume.medium.d ($RES_SIM_57) (13) [SCAL] (1) volume.Hb_flow = $FUN_2 + $FUN_3 ($RES_SIM_93) (14) [FOR-] (2) ($RES_SIM_58) (14) [----] for $i1 in 1:2 loop (14) [----] [SCAL] (1) volume.portVelocities[$i1] = 0.0 ($RES_SIM_59) (14) [----] end for; (15) [FOR-] (2) ($RES_SIM_95) (15) [----] for $i1 in 1:2 loop (15) [----] [SCAL] (1) volume.vessel_ps_static[$i1] = 99999.99999999999 * volume.medium.p_bar ($RES_SIM_96) (15) [----] end for; (16) [ARRY] (1) volume.heatTransfer.Q_flows = volume.heatTransfer.heatPorts.Q_flow ($RES_SIM_98) (17) [FOR-] (2) ($RES_EVT_171) (17) [----] for $i1 in 1:2 loop (17) [----] [SCAL] (1) $SEV_13[$i1] = not volume.regularFlow[$i1] and $SEV_12[$i1] ($RES_EVT_172) (17) [----] end for; (18) [ARRY] (1) volume.heatTransfer.Ts = volume.heatTransfer.heatPorts.T ($RES_SIM_99) (19) [SCAL] (1) $SEV_14 = volume.ports[2].m_flow > 0.0 ($RES_EVT_173) (20) [SCAL] (1) $SEV_15 = volume.ports[1].m_flow > 0.0 ($RES_EVT_174) (21) [SCAL] (1) volume.medium.state.p = 99999.99999999999 * volume.medium.p_bar ($RES_SIM_104) (22) [SCAL] (1) volume.medium.state.T = -((-273.15) - volume.medium.T_degC) ($RES_SIM_105) (23) [SCAL] (1) volume.medium.d = -(0.0034836987724536205 * (99999.99999999999 * volume.medium.p_bar)) / ((-273.15) - volume.medium.T_degC) ($RES_SIM_106) (24) [SCAL] (1) ambient.medium.state.p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_25) (25) [SCAL] (1) volume.medium.u = 287.0512249529787 * ((-273.15) - volume.medium.T_degC) + volume.medium.h ($RES_SIM_107) (26) [SCAL] (1) ambient.medium.state.T = -((-273.15) - ambient.medium.T_degC) ($RES_SIM_26) (27) [SCAL] (1) volume.medium.h = Modelica.Media.IdealGases.Common.Functions.h_T(Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), -((-273.15) - volume.medium.T_degC), true, Modelica.Media.Interfaces.Choices.ReferenceEnthalpy.ZeroAt0K, 0.0) ($RES_SIM_108) (28) [SCAL] (1) ambient.medium.d = -(0.0034836987724536205 * (99999.99999999999 * ambient.medium.p_bar)) / ((-273.15) - ambient.medium.T_degC) ($RES_SIM_27) (29) [SCAL] (1) ambient.medium.u = 287.0512249529787 * ((-273.15) - ambient.medium.T_degC) + ambient.medium.h ($RES_SIM_28) (30) [FOR-] (2) ($RES_SIM_64) (30) [----] for $i1 in 1:2 loop (30) [----] [SCAL] (1) volume.regularFlow[$i1] = $SEV_9[$i1] ($RES_SIM_65) (30) [----] end for; (31) [SCAL] (1) ambient.medium.h = Modelica.Media.IdealGases.Common.Functions.h_T(Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), -((-273.15) - ambient.medium.T_degC), true, Modelica.Media.Interfaces.Choices.ReferenceEnthalpy.ZeroAt0K, 0.0) ($RES_SIM_29) (32) [SCAL] (1) ambient.state.p = ambient.p ($RES_SIM_147) (33) [FOR-] (2) ($RES_SIM_66) (33) [----] for $i1 in 1:2 loop (33) [----] [SCAL] (1) volume.inFlow[$i1] = $SEV_13[$i1] ($RES_SIM_67) (33) [----] end for; (34) [SCAL] (1) ambient.state.T = ambient.T ($RES_SIM_148) (35) [FOR-] (2) ($RES_SIM_68) (35) [----] for $i1 in 1:2 loop (35) [----] [-IF-] (1)if volume.regularFlow[$i1] then (35) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_70) (35) [----] [----] elseif volume.inFlow[$i1] then (35) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_71) (35) [----] [----] else (35) [----] [----] [SCAL] (1) volume.ports[$i1].m_flow = 0.0 ($RES_SIM_72) (35) [----] [----] end if; (35) [----] end for; (36) [ARRY] (1) volume.heatTransfer.Ts = {volume.heatTransfer.states.p} ($RES_BND_123) (37) [SCAL] (1) shortPipe.port_b.m_flow + ambient.ports[1].m_flow = 0.0 ($RES_SIM_112) (38) [SCAL] (1) volume.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_113) (39) [SCAL] (1) volume.ports[2].m_flow - shortPipe.port_b.m_flow = 0.0 ($RES_SIM_114) (40) [SCAL] (1) shortPipe.port_b.p = ambient.ports[1].p ($RES_SIM_115) (41) [SCAL] (1) fixedMassFlowRate.ports[1].p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_33) (42) [SCAL] (1) volume.ports[2].p = shortPipe.port_a.p ($RES_SIM_116) (43) [SCAL] (1) fixedMassFlowRate.ports[1].h_outflow = fixedMassFlowRate.medium.h ($RES_SIM_34) (44) [SCAL] (1) volume.ports[1].m_flow + fixedMassFlowRate.ports[1].m_flow = 0.0 ($RES_SIM_117) (45) [SCAL] (1) fixedMassFlowRate.ports[1].p = volume.ports[1].p ($RES_SIM_118) (46) [FOR-] (2) ($RES_SIM_73) (46) [----] for $i1 in 1:2 loop (46) [----] [-IF-] (1)if volume.regularFlow[$i1] then (46) [----] [----] [SCAL] (1) volume.s[$i1] = 0.0 - volume.portsData_height[$i1] ($RES_SIM_75) (46) [----] [----] elseif volume.inFlow[$i1] then (46) [----] [----] [SCAL] (1) volume.s[$i1] = volume.ports[$i1].m_flow ($RES_SIM_76) (46) [----] [----] else (46) [----] [----] [SCAL] (1) volume.s[$i1] = ((volume.ports[$i1].p - volume.vessel_ps_static[$i1]) / 101325.0) * (volume.portsData_height[$i1] - 0.0) ($RES_SIM_77) (46) [----] [----] end if; (46) [----] end for; (47) [FOR-] (2) ($RES_SIM_78) (47) [----] for $i1 in 1:2 loop (47) [----] [SCAL] (1) volume.ports[$i1].h_outflow = volume.medium.h ($RES_SIM_79) (47) [----] end for; (48) [SCAL] (1) $SEV_1 = shortPipe.flowModel.m_flows[1] > 0.0 ($RES_EVT_155) (49) [SCAL] (1) $SEV_5 = abs(sum({abs(fixedMassFlowRate.ports[1].m_flow)}) - abs(fixedMassFlowRate.ports[1].m_flow)) <= 1e-60 ($RES_EVT_159) (50) [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * ((0.0034836987724536205 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p)), -shortPipe.port_b.m_flow / (((0.0034836987724536205 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_131) (51) [ARRY] (2) shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} ($RES_BND_132) (52) [ARRY] (1) shortPipe.flowModel.dheights = {shortPipe.height_ab} ($RES_BND_135) (53) [ARRY] (1) shortPipe.flowModel.pathLengths = {shortPipe.length} ($RES_BND_136) (54) [FOR-] (2) ($RES_BND_137) (54) [----] for $i1 in 1:2 loop (54) [----] [SCAL] (1) shortPipe.flowModel.rhos[$i1] = (0.0034836987724536205 * shortPipe.flowModel.states.T) / shortPipe.flowModel.states.p ($RES_BND_138) (54) [----] end for; (55) [FOR-] (2) ($RES_BND_139) (55) [----] for $i1 in 1:2 loop (55) [----] [SCAL] (1) shortPipe.flowModel.mus[$i1] = shortPipe.flowModel.mu_nominal ($RES_BND_140) (55) [----] end for; (56) [FOR-] (2) ($RES_SIM_80) (56) [----] for $i1 in 1:2 loop (56) [----] [SCAL] (1) volume.ports_E_flow[$i1] = volume.ports[$i1].m_flow * (volume.portVelocities[$i1] * 0.5 * volume.portVelocities[$i1] + system.g * volume.portsData_height[$i1]) ($RES_SIM_81) (56) [----] end for; (57) [SCAL] (1) fixedMassFlowRate.medium.state.p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_46) (58) [SCAL] (1) volume.ports_H_flow[2] = smooth(0, volume.ports[2].m_flow * (if $SEV_14 then shortPipe.port_a.h_outflow else volume.ports[2].h_outflow)) ($RES_SIM_82) (59) [SCAL] (1) volume.portInDensities[2] = (0.0034836987724536205 * volume.vessel_ps_static[2]) / ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.volume.Medium.T_h.Internal.solve(shortPipe.port_a.h_outflow, 200.0, 6000.0, 1e5, {1.0}, Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), 1e-13) ($RES_SIM_83) (60) [SCAL] (1) fixedMassFlowRate.medium.d = (0.0034836987724536205 * (99999.99999999999 * fixedMassFlowRate.medium.p_bar)) / fixedMassFlowRate.T ($RES_SIM_48) (61) [SCAL] (1) volume.ports_H_flow[1] = smooth(0, volume.ports[1].m_flow * (if $SEV_15 then fixedMassFlowRate.ports[1].h_outflow else volume.ports[1].h_outflow)) ($RES_SIM_84) (62) [SCAL] (1) fixedMassFlowRate.medium.u = fixedMassFlowRate.medium.h - 287.0512249529787 * fixedMassFlowRate.T ($RES_SIM_49) (63) [SCAL] (1) volume.portInDensities[1] = (0.0034836987724536205 * volume.vessel_ps_static[1]) / ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.volume.Medium.T_h.Internal.solve(fixedMassFlowRate.ports[1].h_outflow, 200.0, 6000.0, 1e5, {1.0}, Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), 1e-13) ($RES_SIM_85) (64) [ARRY] (2) volume.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_88) (65) [FOR-] (2) ($RES_EVT_163) (65) [----] for $i1 in 1:2 loop (65) [----] [SCAL] (1) $SEV_9[$i1] = 0.0 >= volume.portsData_height[$i1] ($RES_EVT_164) (65) [----] end for; (66) [FOR-] (2) ($RES_EVT_165) (66) [----] for $i1 in 1:2 loop (66) [----] [SCAL] (1) $SEV_10[$i1] = volume.s[$i1] > 0.0 ($RES_EVT_166) (66) [----] end for; (67) [ARRY] (1) shortPipe.flowModel.dps_fg = {(2.0 * (shortPipe.flowModel.Fs_fg[1] / shortPipe.flowModel.nParallel)) / (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2])} ($RES_SIM_9) (68) [ARRY] (1) shortPipe.flowModel.Is = {shortPipe.flowModel.m_flows[1] * shortPipe.flowModel.pathLengths[1]} ($RES_SIM_8) (69) [FOR-] (2) ($RES_EVT_167) (69) [----] for $i1 in 1:2 loop (69) [----] [SCAL] (1) $SEV_11[$i1] = volume.portsData_height[$i1] >= volume.fluidLevel_max ($RES_EVT_168) (69) [----] end for; (70) [ARRY] (1) {0.0} = shortPipe.flowModel.Ib_flows - (shortPipe.flowModel.Fs_fg + shortPipe.flowModel.Fs_p) ($RES_SIM_7) (71) [SCAL] (1) -shortPipe.port_b.m_flow = shortPipe.flowModel.m_flows[1] ($RES_SIM_6) (72) [FOR-] (2) ($RES_EVT_169) (72) [----] for $i1 in 1:2 loop (72) [----] [SCAL] (1) $SEV_12[$i1] = $SEV_10[$i1] or $SEV_11[$i1] ($RES_EVT_170) (72) [----] end for; (73) [SCAL] (1) shortPipe.port_b.h_outflow = volume.ports[2].h_outflow - system.g * shortPipe.height_ab ($RES_SIM_4) (74) [SCAL] (1) shortPipe.port_a.h_outflow = ambient.ports[1].h_outflow + system.g * shortPipe.height_ab ($RES_SIM_3) (75) [ARRY] (1) shortPipe.flowModel.Fs_p = shortPipe.flowModel.nParallel * {0.5 * (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2]) * (shortPipe.flowModel.states.T - shortPipe.flowModel.states.T)} ($RES_SIM_10) (76) [ARRY] (1) shortPipe.flowModel.Ib_flows = {0.0} ($RES_SIM_11) (77) [ARRY] (2) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_141) (78) [SCAL] (1) shortPipe.flowModel.rhos_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2]) ($RES_SIM_12) (79) [ARRY] (4) shortPipe.flowModel.states = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.shortPipe.Medium.ThermodynamicState(shortPipe.port_a.p, ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.shortPipe.Medium.T_h.Internal.solve(volume.ports[2].h_outflow, 200.0, 6000.0, 1e5, {1.0}, Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), 1e-13)), ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.shortPipe.Medium.ThermodynamicState(shortPipe.port_b.p, ModelicaTest.Media.TestsWithFluid.MediaTestModels.Air.DryAirNasa.shortPipe.Medium.T_h.Internal.solve(ambient.ports[1].h_outflow, 200.0, 6000.0, 1e5, {1.0}, Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), 1e-13))} ($RES_BND_142) (80) [SCAL] (1) shortPipe.flowModel.mus_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.mus[1] else shortPipe.flowModel.mus[2]) ($RES_SIM_13) (81) [SCAL] (1) volume.mb_flow = sum(volume.ports.m_flow) ($RES_$AUX_146) (82) [ARRY] (1) shortPipe.flowModel.dps_fg = {shortPipe.flowModel.dheights[1] * shortPipe.flowModel.g * (if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2])} + shortPipe.flowModel.dp_nominal / shortPipe.flowModel.m_flow_nominal * shortPipe.flowModel.m_flows ($RES_SIM_14) (83) [SCAL] (1) $FUN_2 = sum(volume.ports_H_flow) ($RES_$AUX_145)