Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.2_ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14") translateModel(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001042/0.001048, allocations: 110.5 kB / 16.42 MB, free: 6.52 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001143/0.001143, allocations: 187.2 kB / 17.35 MB, free: 5.73 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.329/1.329, allocations: 205.1 MB / 223.2 MB, free: 12.22 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo): time 0.1734/0.1734, allocations: 39.96 MB / 310.5 MB, free: 4.016 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 1.85e-05/1.85e-05, allocations: 6.219 kB / 436.4 MB, free: 11.79 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14): time 0.2809/0.2809, allocations: 101.9 MB / 0.5256 GB, free: 3.738 MB / 398.1 MB Notification: Performance of NFInst.instExpressions: time 0.03603/0.317, allocations: 36.88 MB / 0.5617 GB, free: 2.93 MB / 398.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.002554/0.3196, allocations: 94.44 kB / 0.5617 GB, free: 2.93 MB / 398.1 MB Notification: Performance of NFTyping.typeComponents: time 0.002272/0.3219, allocations: 1.255 MB / 0.563 GB, free: 2.902 MB / 398.1 MB Notification: Performance of NFTyping.typeBindings: time 0.01889/0.3408, allocations: 8.007 MB / 0.5708 GB, free: 36 kB / 398.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.0177/0.3586, allocations: 7.623 MB / 0.5782 GB, free: 11.84 MB / 414.1 MB Notification: Performance of NFFlatten.flatten: time 0.009386/0.368, allocations: 8.38 MB / 0.5864 GB, free: 5.156 MB / 414.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.002313/0.3703, allocations: 1.606 MB / 0.588 GB, free: 3.562 MB / 414.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.005277/0.3756, allocations: 3.234 MB / 0.5911 GB, free: 0.5938 MB / 414.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0232/0.3988, allocations: 12.15 MB / 0.603 GB, free: 4.598 MB / 430.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0008192/0.3996, allocations: 220 kB / 0.6032 GB, free: 4.383 MB / 430.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.01961/0.4193, allocations: 9.506 MB / 0.6125 GB, free: 11.01 MB / 446.1 MB Notification: Performance of combineBinaries: time 0.005892/0.4252, allocations: 5.187 MB / 0.6176 GB, free: 6.078 MB / 446.1 MB Notification: Performance of replaceArrayConstructors: time 0.003178/0.4284, allocations: 3.368 MB / 0.6209 GB, free: 2.844 MB / 446.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0008996/0.4293, allocations: 422.9 kB / 0.6213 GB, free: 2.43 MB / 446.1 MB Notification: Performance of FrontEnd: time 0.0004277/0.4297, allocations: 67.69 kB / 0.6213 GB, free: 2.363 MB / 446.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 536 (362) * Number of variables: 636 (432) Notification: Performance of Bindings: time 0.01439/0.4441, allocations: 15.17 MB / 0.6361 GB, free: 3.086 MB / 462.1 MB Notification: Performance of FunctionAlias: time 0.001754/0.4459, allocations: 1.605 MB / 0.6377 GB, free: 1.504 MB / 462.1 MB Notification: Performance of Early Inline: time 0.008332/0.4543, allocations: 8.026 MB / 0.6455 GB, free: 9.711 MB / 478.1 MB Notification: Performance of simplify1: time 0.0008424/0.4551, allocations: 0.5345 MB / 0.6461 GB, free: 9.215 MB / 478.1 MB Notification: Performance of Alias: time 0.007117/0.4623, allocations: 5.968 MB / 0.6519 GB, free: 2.961 MB / 478.1 MB Notification: Performance of simplify2: time 0.0009855/0.4633, allocations: 0.5129 MB / 0.6524 GB, free: 2.484 MB / 478.1 MB Notification: Performance of Events: time 0.00193/0.4652, allocations: 1.875 MB / 0.6542 GB, free: 0.6602 MB / 478.1 MB Notification: Performance of Detect States: time 0.001805/0.467, allocations: 1.978 MB / 0.6562 GB, free: 14.74 MB / 494.1 MB Notification: Performance of Partitioning: time 0.003206/0.4702, allocations: 3.017 MB / 0.6591 GB, free: 11.44 MB / 494.1 MB Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (412/621) **************************** (1) [ALGB] (1) Real pipe2.state_b.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (2) [ALGB] (1) Real[1] pipe2.mb_flows (min = {-1e5 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}) (3) [DISC] (1) Integer sink.medium.phase (fixed = false, start = 1, min = 0, max = 2) (4) [ALGB] (1) protected Real valve1.state_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (5) [ALGB] (1) Real[1] pipe2.mediums.T (start = {pipe2.T_start}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}, StateSelect = default) (6) [ALGB] (1) Real pipe2.state_b.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (7) [DISC] (9) Integer[3, 3] pipe1.statesFM.phase (min = {0 for $i1 in 1:3}, max = {2 for $i1 in 1:3}) (8) [ALGB] (2) Real[2] pipe3.H_flows (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (9) [DISC] (4) Integer[2, 2] pipe2.statesFM.phase (min = {0 for $i1 in 1:2}, max = {2 for $i1 in 1:2}) (10) [ALGB] (1) protected Real[1] pipe3.dheightsFM (11) [DISC] (1) final input Integer[1, 1] pipe3.heatTransfer.states.phase = {pipe3.mediums[1].state.phase} (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (12) [ALGB] (1) protected Real valve1.state_b.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (13) [DISC] (1) protected Real valveOpening1.b (14) [ALGB] (2) Real[2] pipe2.H_flows (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (15) [DISC] (1) protected Real valveOpening1.a (16) [ALGB] (1) protected Real valve1.state_b.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (17) [DISC] (1) protected Integer valve1.state_a.phase (min = 0, max = 2) (18) [DISC] (1) Boolean[1] $SEV_18[$i1] (19) [ALGB] (2) Real[2] pipe1.H_flows (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (20) [DISC] (1) Integer[1] pipe3.mediums.phase (fixed = {false for $i1 in 1:1}, start = {1 for $i1 in 1:1}, min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (21) [ALGB] (1) final Real[1] pipe3.flowModel.dheights = pipe3.dheightsFM (22) [DISC] (1) protected discrete Real valveOpening1.nextEvent (fixed = true, start = 0.0) (23) [ALGB] (2) final Real[2] pipe1.flowModel.dheights = pipe1.dheightsFM (24) [ALGB] (1) Real pipe2.state_b.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (25) [ALGB] (1) protected Real valve1.state_b.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (26) [ALGB] (1) stream Real pipe1.port_b.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (27) [DER-] (1) Real[1] $DER.pipe3.Us (28) [ALGB] (1) Real[1] pipe2.mediums.T_degC = {Modelica.SIunits.Conversions.to_degC(pipe2.mediums[1].T)} (29) [ALGB] (1) Real[1] pipe3.mediums.T_degC = {Modelica.SIunits.Conversions.to_degC(pipe3.mediums[1].T)} (30) [ALGB] (3) final Real[3] pipe1.flowModel.crossAreas = pipe1.crossAreasFM (31) [ALGB] (3) final Real[3] pipe1.flowModel.dimensions = pipe1.dimensionsFM (32) [ALGB] (1) Real valve2.V_flow = (-valve2.port_b.m_flow) / Modelica.Fluid.Utilities.regStep(-valve2.port_b.m_flow, ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.density(valve2.state_a), ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.density(valve2.state_b), valve2.m_flow_small) (33) [ALGB] (1) Real[1] pipe1.Qb_flows (34) [ALGB] (1) Real pipe3.port_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (35) [ALGB] (1) stream Real junctionIdeal.port_3.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (36) [ALGB] (1) Real pipe2.state_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (37) [ALGB] (1) final input Real[1, 1] pipe2.heatTransfer.states.T = {pipe2.mediums[1].state.T} (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (38) [DER-] (1) Real[1] $DER.pipe2.Us (39) [ALGB] (1) Real pipe2.state_a.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (40) [DISC] (9) final input Integer[3, 3] pipe1.flowModel.states.phase = {pipe1.statesFM[1].phase, pipe1.statesFM[2].phase, pipe1.statesFM[3].phase} (min = {0 for $i1 in 1:3}, max = {2 for $i1 in 1:3}) (41) [ALGB] (1) protected Real valve1.state_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (42) [ALGB] (1) Real[1] pipe1.mediums.state.T (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (43) [ALGB] (1) Real pipe2.state_a.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (44) [ALGB] (1) Real[1] pipe2.mediums.sat.Tsat (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (45) [DER-] (1) Real[1] $DER.pipe1.Us (46) [ALGB] (1) protected Real valve1.state_a.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (47) [ALGB] (1) final input Real[1, 1] pipe2.heatTransfer.states.d = {pipe2.mediums[1].state.d} (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (48) [DISC] (1) Integer[1] pipe2.mediums.phase (fixed = {false for $i1 in 1:1}, start = {1 for $i1 in 1:1}, min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (49) [ALGB] (1) protected Real valve1.state_a.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (50) [ALGB] (2) Real[2] pipe2.flowModel.mus = {pipe2.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (51) [ALGB] (2) final Real[2] pipe2.flowModel.roughnesses = pipe2.roughnessesFM (min = {0.0 for $i1 in 1:2}) (52) [ALGB] (1) final input Real[1, 1] pipe2.heatTransfer.states.h = {pipe2.mediums[1].state.h} (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (53) [DISC] (1) Integer[1] pipe2.mediums.state.phase (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (54) [ALGB] (1) final Real[1] pipe2.fluidVolumes = {pipe2.crossAreas[1] * 10.0} .* pipe2.nParallel (55) [ALGB] (1) protected Real[1] pipe2.pathLengths (56) [ALGB] (1) Real[1] pipe1.mediums.state.d (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (57) [ALGB] (1) Real pipe2.state_a.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (58) [DISC] (1) Integer pipe2.state_a.phase (min = 0, max = 2) (59) [ALGB] (1) protected Real[1] pipe2.dheightsFM (60) [ALGB] (1) Real[1] pipe1.mediums.state.h (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (61) [ALGB] (1) final input Real[1, 1] pipe2.heatTransfer.states.p = {pipe2.mediums[1].state.p} (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (62) [ALGB] (1) final input Real[1, 1] pipe3.heatTransfer.states.p = {pipe3.mediums[1].state.p} (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (63) [ALGB] (1) flow Real pipe1.port_a.m_flow (min = -1e60, max = 1e5) (64) [ALGB] (1) protected Real valve1.state_a.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (65) [ALGB] (1) Real[1] pipe1.mediums.state.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (66) [ALGB] (1) final input Real[1, 1] pipe3.heatTransfer.states.h = {pipe3.mediums[1].state.h} (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (67) [ALGB] (1) Real[1] pipe1.Hb_flows (68) [ALGB] (1) final input Real[1, 1] pipe3.heatTransfer.states.d = {pipe3.mediums[1].state.d} (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (69) [ALGB] (1) Real[1] pipe2.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (70) [ALGB] (2) final Real[2] pipe3.flowModel.crossAreas = pipe3.crossAreasFM (71) [ALGB] (2) final Real[2] pipe3.flowModel.dimensions = pipe3.dimensionsFM (72) [DISC] (1) Integer source.medium.state.phase (min = 0, max = 2) (73) [ALGB] (1) Real valve1.V_flow = (-valve1.port_b.m_flow) / Modelica.Fluid.Utilities.regStep(-valve1.port_b.m_flow, ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.density(valve1.state_a), ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.density(valve1.state_b), valve1.m_flow_small) (74) [ALGB] (1) final input Real[1, 1] pipe3.heatTransfer.states.T = {pipe3.mediums[1].state.T} (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (75) [ALGB] (1) Real source.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - source.medium.T_degC)) (76) [DISC] (1) Integer[1] pipe1.mediums.state.phase (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (77) [ALGB] (1) Real[1] pipe3.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (78) [ALGB] (1) stream Real valve2.port_b.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (79) [DER-] (1) Real $DER.junctionIdeal.U (80) [ALGB] (2) Real[2] pipe1.flowModel.Fs_fg (81) [ALGB] (1) Real valve2.port_b_T = Modelica.Fluid.Utilities.regStep(valve2.port_b.m_flow, ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.temperature(valve2.state_b), ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.temperature(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.setState_phX(valve2.port_b.p, valve2.port_b.h_outflow, {}, 0, 0)), valve2.m_flow_small) (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (82) [ALGB] (1) Real source.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (83) [DISC] (1) Integer sink.medium.state.phase (min = 0, max = 2) (84) [ALGB] (1) Real[1] pipe2.flowModel.Ib_flows (85) [ALGB] (2) Real[2] pipe3.m_flows (start = {0.0 for $i1 in 1:2}, min = {-1e60 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (86) [ALGB] (1) Real[1] pipe2.heatTransfer.Q_flows (87) [ALGB] (2) protected Real[2] pipe1.dheightsFM (88) [ALGB] (2) Real[2] pipe2.m_flows (start = {0.0 for $i1 in 1:2}, min = {-1e60 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (89) [ALGB] (1) Real[1] pipe2.flowModel.Is (90) [ALGB] (1) Real source.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (91) [DER-] (1) Real $DER.junctionIdeal.m (92) [ALGB] (2) Real[2] pipe1.m_flows (start = {0.0 for $i1 in 1:2}, min = {-1e60 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (93) [ALGB] (1) Real source.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (94) [ALGB] (1) flow Real pipe1.port_b.m_flow (min = -1e5, max = 1e60) (95) [ALGB] (1) Real valve2.port_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (96) [ALGB] (1) Real[1] pipe3.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (97) [DISC] (1) Boolean $TEV_1 (98) [ALGB] (1) Real[1] pipe1.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (99) [DISC] (1) Boolean $TEV_0 (100) [ALGB] (2) protected Real[2] pipe1.pathLengths (101) [ALGB] (2) Real[2] pipe1.flowModel.rhos_act (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (102) [ALGB] (1) Real[1] pipe1.mediums.T_degC = {Modelica.SIunits.Conversions.to_degC(pipe1.mediums[1].T)} (103) [DISC] (1) protected Integer valve1.state_b.phase (min = 0, max = 2) (104) [DISC] (1) Integer[1] pipe3.mediums.state.phase (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (105) [ALGB] (1) Real valve2.port_a_T = Modelica.Fluid.Utilities.regStep(-valve2.port_b.m_flow, ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.temperature(valve2.state_a), ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.temperature(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.setState_phX(pipe3.port_b.p, valve2.port_a.h_outflow, {}, 0, 0)), valve2.m_flow_small) (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (106) [ALGB] (1) Real[1] pipe1.mediums.sat.psat (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (107) [ALGB] (1) flow Real pipe3.port_a.m_flow (min = -1e60, max = 1e5) (108) [DISC] (3) Boolean[3] $SEV_2[$i1] (109) [ALGB] (1) Real[1] pipe3.mb_flows (min = {-1e5 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}) (110) [ALGB] (4) final input Real[2, 2] pipe2.flowModel.states.T = {pipe2.statesFM[1].T, pipe2.statesFM[2].T} (start = {500.0 for $i1 in 1:2}, min = {273.15 for $i1 in 1:2}, max = {2273.15 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (111) [ALGB] (1) Real[1] pipe2.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (112) [ALGB] (2) protected Real[2] pipe2.dimensionsFM (113) [ALGB] (2) protected Real[2] pipe2.crossAreasFM (114) [ALGB] (1) protected Real[1] pipe3.pathLengths (115) [ALGB] (1) flow Real valve2.port_b.m_flow (min = -1e5, max = 1e60) (116) [ALGB] (1) Real junctionIdeal.Hb_flow (117) [ALGB] (9) final input Real[3, 3] pipe1.flowModel.states.p = {pipe1.statesFM[1].p, pipe1.statesFM[2].p, pipe1.statesFM[3].p} (start = {5e6 for $i1 in 1:3}, min = {611.657 for $i1 in 1:3}, max = {1e8 for $i1 in 1:3}, nominal = {1e6 for $i1 in 1:3}) (118) [ALGB] (4) Real[2, 2] pipe3.statesFM.p (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (119) [ALGB] (1) Real[1] pipe1.Wb_flows (120) [ALGB] (9) final input Real[3, 3] pipe1.flowModel.states.h = {pipe1.statesFM[1].h, pipe1.statesFM[2].h, pipe1.statesFM[3].h} (start = {1e5 for $i1 in 1:3}, min = {-1e10 for $i1 in 1:3}, max = {1e10 for $i1 in 1:3}, nominal = {5e5 for $i1 in 1:3}) (121) [ALGB] (4) final input Real[2, 2] pipe2.flowModel.states.d = {pipe2.statesFM[1].d, pipe2.statesFM[2].d} (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (122) [ALGB] (1) Real[1] pipe2.flowModel.Fs_fg (123) [ALGB] (4) Real[2, 2] pipe3.statesFM.h (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (124) [ALGB] (9) final input Real[3, 3] pipe1.flowModel.states.d = {pipe1.statesFM[1].d, pipe1.statesFM[2].d, pipe1.statesFM[3].d} (start = {150.0 for $i1 in 1:3}, min = {0.0 for $i1 in 1:3}, max = {1e5 for $i1 in 1:3}, nominal = {500.0 for $i1 in 1:3}) (125) [ALGB] (4) final input Real[2, 2] pipe2.flowModel.states.h = {pipe2.statesFM[1].h, pipe2.statesFM[2].h} (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (126) [ALGB] (4) Real[2, 2] pipe3.statesFM.d (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (127) [ALGB] (1) Real[1] pipe1.vs = {(0.5 * (pipe1.m_flows[2] + pipe1.m_flows[1])) / (pipe1.crossAreas[1] * pipe1.mediums[1].d)} / pipe1.nParallel (128) [ALGB] (4) final input Real[2, 2] pipe2.flowModel.states.p = {pipe2.statesFM[1].p, pipe2.statesFM[2].p} (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (129) [ALGB] (1) flow Real[1] pipe3.heatTransfer.heatPorts.Q_flow (130) [ALGB] (1) Real source.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (131) [ALGB] (1) protected Real valve1.minLimiter.y (132) [DISC] (1) final input Integer[1, 1] pipe2.heatTransfer.states.phase = {pipe2.mediums[1].state.phase} (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (133) [ALGB] (1) Real[1] pipe2.Qb_flows (134) [ALGB] (9) final input Real[3, 3] pipe1.flowModel.states.T = {pipe1.statesFM[1].T, pipe1.statesFM[2].T, pipe1.statesFM[3].T} (start = {500.0 for $i1 in 1:3}, min = {273.15 for $i1 in 1:3}, max = {2273.15 for $i1 in 1:3}, nominal = {500.0 for $i1 in 1:3}) (135) [ALGB] (1) Real[1] pipe2.vs = {(0.5 * (pipe2.m_flows[2] + pipe2.m_flows[1])) / (pipe2.crossAreas[1] * pipe2.mediums[1].d)} / pipe2.nParallel (136) [ALGB] (1) Real[1] pipe3.mediums.u (min = {-1e8 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (137) [ALGB] (4) Real[2, 2] pipe3.statesFM.T (start = {500.0 for $i1 in 1:2}, min = {273.15 for $i1 in 1:2}, max = {2273.15 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (138) [DISC] (2) Boolean[2] $SEV_1[$i1] (139) [ALGB] (1) Real[1] pipe2.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (140) [ALGB] (2) final Real[2] pipe2.flowModel.vs = pipe2.vsFM (141) [ALGB] (1) Real[1] pipe3.mediums.state.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (142) [ALGB] (1) Real[1] pipe3.mediums.p (start = {pipe3.ps_start[1]}, min = {0.0 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}, StateSelect = prefer) (143) [ALGB] (1) Real[1] pipe2.flowModel.pathLengths_internal = pipe2.flowModel.pathLengths (144) [ALGB] (1) final Real[1] pipe1.heatTransfer.vs = pipe1.vs (145) [ALGB] (1) Real[1] pipe3.vs = {(0.5 * (pipe3.m_flows[2] + pipe3.m_flows[1])) / (pipe3.crossAreas[1] * pipe3.mediums[1].d)} / pipe3.nParallel (146) [ALGB] (1) Real[1] pipe3.mediums.state.h (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (147) [ALGB] (1) Real[1] pipe3.mediums.h (start = {pipe3.h_start}, StateSelect = prefer) (148) [ALGB] (1) Real[1] pipe2.flowModel.rhos_act (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (149) [ALGB] (2) Real[2] pipe3.flowModel.rhos = {ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe3.flowModel.Medium.density(pipe3.flowModel.states[$i1]) for $i1 in 1:2} (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (150) [ALGB] (1) Real[1] pipe3.mediums.state.d (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (151) [ALGB] (1) Real[1] pipe3.mediums.d (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}, StateSelect = default) (152) [ALGB] (1) Real sink.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - sink.medium.T_degC)) (153) [ALGB] (1) Real pipe3.state_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (154) [ALGB] (1) Real[1] pipe3.flowModel.Fs_p (155) [DISC] (1) Boolean[1] $SEV_41[$i1] (156) [ALGB] (2) Real[2] pipe1.flowModel.Res_turbulent_internal = pipe1.flowModel.Re_turbulent * {1.0 for $i1 in 1:2} (157) [ALGB] (1) stream Real valve1.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (158) [DISC] (1) protected Integer valveOpening2.last (start = 1) (159) [ALGB] (1) Real pipe3.state_b.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (160) [ALGB] (1) protected Real valve2.state_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (161) [ALGB] (4) Real[2, 2] pipe2.statesFM.p (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (162) [ALGB] (1) Real[1] pipe3.mediums.state.T (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (163) [ALGB] (1) Real[1] pipe3.mediums.T (start = {pipe3.T_start}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}, StateSelect = default) (164) [ALGB] (1) Real pipe3.state_b.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (165) [ALGB] (1) protected Real[1] pipe2.flowModel.diameters = 0.5 * (pipe2.flowModel.dimensions[2:2] + pipe2.flowModel.dimensions[1:1]) (166) [ALGB] (1) protected Real valve2.state_b.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (167) [ALGB] (4) Real[2, 2] pipe2.statesFM.h (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (168) [ALGB] (1) Real[1] pipe2.Hb_flows (169) [ALGB] (2) Real[2] pipe1.flowModel.Ib_flows (170) [ALGB] (1) protected Real valve2.state_b.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (171) [DISC] (2) Boolean[2] $SEV_0[$i1] (172) [ALGB] (4) Real[2, 2] pipe2.statesFM.d (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (173) [ALGB] (1) Real[1] pipe2.flowModel.Res_turbulent_internal = pipe2.flowModel.Re_turbulent * {1.0 for $i1 in 1:1} (174) [ALGB] (1) Real pipe3.state_b.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (175) [ALGB] (1) Real[1] pipe1.mediums.u (min = {-1e8 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (176) [ALGB] (1) Real sink.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (177) [ALGB] (1) Real[1] pipe1.mediums.p (start = {pipe1.ps_start[1]}, min = {0.0 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}, StateSelect = prefer) (178) [ALGB] (1) Real valve2.dp_turbulent = max(valve2.dp_small, ((ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.dynamicViscosity(valve2.state_a) + ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.dynamicViscosity(valve2.state_b)) ^ 2.0 * 3.141592653589793 * 1.6e7) / (8.0 * valve2.Av * max(valve2.relativeFlowCoefficient, 0.001) * (ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.density(valve2.state_b) + ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve2.Medium.density(valve2.state_a)))) (min = 0.0, nominal = 1e5) (179) [ALGB] (1) protected Real valve2.state_b.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (180) [ALGB] (1) Real[1] pipe3.heatTransfer.Ts = {ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe3.heatTransfer.Medium.temperature(pipe3.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (181) [ALGB] (4) Real[2, 2] pipe2.statesFM.T (start = {500.0 for $i1 in 1:2}, min = {273.15 for $i1 in 1:2}, max = {2273.15 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (182) [ALGB] (1) Real[1] pipe1.heatTransfer.Q_flows (183) [ALGB] (3) protected Real[3] pipe1.roughnessesFM (min = {0.0 for $i1 in 1:3}) (184) [ALGB] (1) flow Real[1] source.ports.m_flow (min = {-1e60}, max = {1e60}) (185) [ALGB] (1) Real[1] pipe1.mediums.h (start = {pipe1.h_start}, StateSelect = prefer) (186) [DISC] (2) Boolean[2] $SEV_40[$i1] (187) [ALGB] (1) Real source.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (188) [ALGB] (1) Real pipe3.state_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (189) [ALGB] (1) Real[1] pipe1.mediums.d (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}, StateSelect = default) (190) [ALGB] (1) Real pipe1.port_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (191) [DISC] (1) protected Integer valveOpening1.last (start = 1) (192) [ALGB] (1) Real pipe1.state_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (193) [ALGB] (1) Real[1] pipe3.flowModel.dps_fg (start = {pipe3.flowModel.p_a_start - pipe3.flowModel.p_b_start for $i1 in 1:1}) (194) [ALGB] (1) final Real[1] pipe3.fluidVolumes = {pipe3.crossAreas[1] * 10.0} .* pipe3.nParallel (195) [ALGB] (1) Real junctionIdeal.medium.sat.Tsat (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (196) [ALGB] (1) Real[1] pipe3.mediums.sat.psat (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (197) [ALGB] (2) protected Real[2] pipe1.flowModel.diameters = 0.5 * (pipe1.flowModel.dimensions[2:3] + pipe1.flowModel.dimensions[1:2]) (198) [ALGB] (1) Real pipe3.state_a.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (199) [ALGB] (1) protected Real valve2.state_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (200) [ALGB] (1) Real[1] pipe3.flowModel.pathLengths_internal = pipe3.flowModel.pathLengths (201) [ALGB] (1) Real pipe1.state_b.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (202) [ALGB] (1) Real pipe3.state_a.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (203) [ALGB] (1) Real source.medium.h (StateSelect = default) (204) [DISC] (1) protected discrete Real valveOpening1.nextEventScaled (fixed = true, start = 0.0) (205) [ALGB] (3) protected Real[3] pipe1.vsFM (206) [ALGB] (2) Real[2] pipe1.flowModel.m_flows (start = {0.0 for $i1 in 1:2}, min = {-1e60 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, StateSelect = default) (207) [ALGB] (1) Real[1] pipe1.mediums.T (start = {pipe1.T_start}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}, StateSelect = default) (208) [ALGB] (1) Real pipe1.state_b.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (209) [ALGB] (1) Real source.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (210) [ALGB] (1) protected Real valve2.state_a.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (211) [ALGB] (2) protected Real[2] pipe2.roughnessesFM (min = {0.0 for $i1 in 1:2}) (212) [ALGB] (1) Real junctionIdeal.mb_flow (213) [ALGB] (1) Real[1] pipe1.heatTransfer.Ts = {ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe1.heatTransfer.Medium.temperature(pipe1.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (214) [ALGB] (1) protected Real valve2.state_a.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (215) [ALGB] (9) Real[3, 3] pipe1.statesFM.p (start = {5e6 for $i1 in 1:3}, min = {611.657 for $i1 in 1:3}, max = {1e8 for $i1 in 1:3}, nominal = {1e6 for $i1 in 1:3}) (216) [ALGB] (1) Real pipe3.state_a.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (217) [DER-] (1) Real[1] $DER.pipe3.ms (218) [DISC] (1) protected discrete Real valveOpening2.nextEvent (fixed = true, start = 0.0) (219) [ALGB] (9) Real[3, 3] pipe1.statesFM.h (start = {1e5 for $i1 in 1:3}, min = {-1e10 for $i1 in 1:3}, max = {1e10 for $i1 in 1:3}, nominal = {5e5 for $i1 in 1:3}) (220) [ALGB] (1) Real pipe1.state_b.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (221) [ALGB] (1) Real[1] pipe3.flowModel.Ib_flows (222) [ALGB] (1) stream Real pipe2.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (223) [ALGB] (9) Real[3, 3] pipe1.statesFM.d (start = {150.0 for $i1 in 1:3}, min = {0.0 for $i1 in 1:3}, max = {1e5 for $i1 in 1:3}, nominal = {500.0 for $i1 in 1:3}) (224) [ALGB] (1) protected Real valve2.state_a.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (225) [ALGB] (1) Real sink.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (226) [ALGB] (2) final Real[2] pipe3.flowModel.roughnesses = pipe3.roughnessesFM (min = {0.0 for $i1 in 1:2}) (227) [DER-] (1) Real[1] $DER.pipe2.ms (228) [DISC] (1) protected Integer valve2.state_b.phase (min = 0, max = 2) (229) [ALGB] (1) stream Real pipe1.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (230) [DISC] (4) Integer[2, 2] pipe3.statesFM.phase (min = {0 for $i1 in 1:2}, max = {2 for $i1 in 1:2}) (231) [DISC] (4) final input Integer[2, 2] pipe3.flowModel.states.phase = {pipe3.statesFM[1].phase, pipe3.statesFM[2].phase} (min = {0 for $i1 in 1:2}, max = {2 for $i1 in 1:2}) (232) [DISC] (1) Boolean $SEV_56 (233) [DISC] (1) Boolean $SEV_55 (234) [DISC] (1) Boolean $SEV_54 (235) [DISC] (1) Boolean $SEV_53 (236) [ALGB] (1) Real sink.medium.h (StateSelect = default) (237) [ALGB] (1) Real[1] pipe2.mediums.state.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (238) [ALGB] (1) Real pipe1.state_a.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (239) [DISC] (1) Boolean $SEV_52 (240) [ALGB] (9) Real[3, 3] pipe1.statesFM.T (start = {500.0 for $i1 in 1:3}, min = {273.15 for $i1 in 1:3}, max = {2273.15 for $i1 in 1:3}, nominal = {500.0 for $i1 in 1:3}) (241) [ALGB] (1) Real[1] pipe3.heatTransfer.Q_flows (242) [DISC] (1) Boolean $SEV_51 (243) [DER-] (1) Real[1] $DER.pipe1.ms (244) [DISC] (1) Boolean $SEV_50 (245) [ALGB] (2) Real[2] pipe1.flowModel.mus_act (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (246) [ALGB] (1) Real sink.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (247) [ALGB] (2) protected Real[2] pipe2.vsFM (248) [ALGB] (1) Real[1] pipe2.mediums.state.h (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (249) [ALGB] (1) Real pipe1.state_a.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (250) [ALGB] (1) Real valve1.dp (start = valve1.dp_start) (251) [ALGB] (2) protected Real[2] pipe3.roughnessesFM (min = {0.0 for $i1 in 1:2}) (252) [ALGB] (1) Real[1] pipe2.mediums.state.d (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (253) [ALGB] (1) Real pipe1.state_a.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (254) [ALGB] (1) Real[1] pipe2.heatTransfer.Ts = {ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe2.heatTransfer.Medium.temperature(pipe2.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (255) [ALGB] (1) stream Real valve2.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (256) [ALGB] (1) Real[1] pipe2.Wb_flows (257) [ALGB] (1) Real[1] pipe3.flowModel.Is (258) [ALGB] (1) final Real[1] pipe3.heatTransfer.vs = pipe3.vs (259) [ALGB] (1) Real valve2.dp (start = valve2.dp_start) (260) [ALGB] (1) Real[1] pipe1.mediums.sat.Tsat (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (261) [ALGB] (1) Real[1] pipe2.flowModel.dps_fg (start = {pipe2.flowModel.p_a_start - pipe2.flowModel.p_b_start for $i1 in 1:1}) (262) [DISC] (1) Integer pipe1.state_b.phase (min = 0, max = 2) (263) [DISC] (1) Boolean $SEV_49 (264) [DISC] (1) Boolean $SEV_48 (265) [ALGB] (1) Real[1] pipe2.mediums.state.T (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (266) [ALGB] (1) final Real[1] pipe2.flowModel.dheights = pipe2.dheightsFM (267) [ALGB] (1) Real pipe1.state_a.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (268) [ALGB] (4) final input Real[2, 2] pipe3.flowModel.states.T = {pipe3.statesFM[1].T, pipe3.statesFM[2].T} (start = {500.0 for $i1 in 1:2}, min = {273.15 for $i1 in 1:2}, max = {2273.15 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (269) [ALGB] (1) Real junctionIdeal.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - junctionIdeal.medium.T_degC)) (270) [DISC] (1) Integer junctionIdeal.medium.phase (fixed = false, start = 1, min = 0, max = 2) (271) [DISC] (1) Boolean $SEV_47 (272) [DISC] (1) Boolean $SEV_46 (273) [ALGB] (1) Real[1] pipe1.mb_flows (min = {-1e5 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}) (274) [DISC] (1) Boolean $SEV_43 (275) [ALGB] (2) final Real[2] pipe2.flowModel.dimensions = pipe2.dimensionsFM (276) [ALGB] (2) final Real[2] pipe2.flowModel.crossAreas = pipe2.crossAreasFM (277) [DISC] (1) protected discrete Real valveOpening2.nextEventScaled (fixed = true, start = 0.0) (278) [DISC] (1) Integer source.medium.phase (fixed = false, start = 1, min = 0, max = 2) (279) [ALGB] (1) Real[1] pipe3.Qb_flows (280) [ALGB] (1) Real $FUN_9 (281) [ALGB] (4) final input Real[2, 2] pipe3.flowModel.states.d = {pipe3.statesFM[1].d, pipe3.statesFM[2].d} (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (282) [ALGB] (1) Real $FUN_8 (283) [ALGB] (1) protected Real pipe3.flowModel.dp_fric_nominal = sum({ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe3.flowModel.WallFriction.pressureLoss_m_flow(pipe3.flowModel.m_flow_nominal / pipe3.flowModel.nParallel, pipe3.flowModel.rho_nominal, pipe3.flowModel.rho_nominal, pipe3.flowModel.mu_nominal, pipe3.flowModel.mu_nominal, pipe3.flowModel.pathLengths_internal[1], pipe3.flowModel.diameters[1], ((pipe3.flowModel.crossAreas[2:2] + pipe3.flowModel.crossAreas[1:1]) / 2.0)[1], ((pipe3.flowModel.roughnesses[2:2] + pipe3.flowModel.roughnesses[1:1]) / 2.0)[1], pipe3.flowModel.m_flow_small / pipe3.flowModel.nParallel, pipe3.flowModel.Res_turbulent_internal[1])}) (min = 0.0, nominal = 1e5) (284) [ALGB] (1) Real $FUN_7 (285) [ALGB] (1) Real $FUN_6 (286) [ALGB] (1) Real $FUN_25 (287) [ALGB] (1) final Real[1] pipe1.fluidVolumes = {pipe1.crossAreas[1] * 10.0} .* pipe1.nParallel (288) [ALGB] (1) Real $FUN_5 (289) [ALGB] (4) final input Real[2, 2] pipe3.flowModel.states.h = {pipe3.statesFM[1].h, pipe3.statesFM[2].h} (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (290) [ALGB] (1) Real $FUN_4 (291) [ALGB] (1) Real $FUN_23 (292) [ALGB] (1) Real $FUN_3 (293) [ALGB] (2) protected Real[2] pipe3.vsFM (294) [ALGB] (1) Real $FUN_2 (295) [ALGB] (1) Real $FUN_21 (296) [ALGB] (1) Real $FUN_1 (297) [DISC] (1) Integer $FUN_20 (298) [ALGB] (4) final input Real[2, 2] pipe3.flowModel.states.p = {pipe3.statesFM[1].p, pipe3.statesFM[2].p} (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (299) [DISC] (4) final input Integer[2, 2] pipe2.flowModel.states.phase = {pipe2.statesFM[1].phase, pipe2.statesFM[2].phase} (min = {0 for $i1 in 1:2}, max = {2 for $i1 in 1:2}) (300) [ALGB] (2) protected Real[2] pipe3.crossAreasFM (301) [ALGB] (2) protected Real[2] pipe3.dimensionsFM (302) [DISC] (1) Boolean $SEV_39 (303) [DISC] (1) Boolean $SEV_38 (304) [DISC] (1) Boolean $SEV_37 (305) [ALGB] (1) Real[1] pipe2.mediums.sat.psat (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (306) [DISC] (1) Boolean $SEV_36 (307) [DISC] (1) Boolean $SEV_35 (308) [ALGB] (1) flow Real valve1.port_b.m_flow (min = -1e5, max = 1e60) (309) [DISC] (1) Boolean $SEV_34 (310) [DISC] (1) Boolean $SEV_33 (311) [ALGB] (1) Real junctionIdeal.medium.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0, StateSelect = default) (312) [DISC] (1) Boolean $SEV_32 (313) [DISC] (1) Boolean $SEV_31 (314) [ALGB] (2) Real[2] sink.ports.p (start = {5e6 for $i1 in 1:2}, min = {611.657 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (315) [DISC] (1) Boolean $SEV_30 (316) [ALGB] (1) Real pipe2.port_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (317) [ALGB] (1) flow Real pipe2.port_a.m_flow (min = -1e60, max = 1e5) (318) [ALGB] (1) Real $FUN_19 (319) [ALGB] (1) Real junctionIdeal.medium.state.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (320) [ALGB] (1) Real $FUN_18 (321) [ALGB] (1) Real $FUN_17 (322) [DISC] (1) Integer $FUN_16 (323) [ALGB] (1) Real $FUN_15 (324) [ALGB] (1) Real[1] pipe3.flowModel.rhos_act (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (325) [ALGB] (1) Real $FUN_14 (326) [ALGB] (1) Real $FUN_13 (327) [ALGB] (1) Real $FUN_12 (328) [ALGB] (1) Real sink.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (329) [ALGB] (1) Real junctionIdeal.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (330) [DISC] (1) Integer junctionIdeal.medium.state.phase (min = 0, max = 2) (331) [ALGB] (1) Real $FUN_11 (332) [DISC] (1) Integer pipe3.state_a.phase (min = 0, max = 2) (333) [ALGB] (1) Real junctionIdeal.medium.state.h (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (334) [ALGB] (1) Real $FUN_10 (335) [ALGB] (1) final Real[1] pipe3.flowModel.pathLengths = pipe3.pathLengths (336) [ALGB] (1) Real sink.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (337) [ALGB] (1) Real[1] pipe3.Hb_flows (338) [ALGB] (1) Real junctionIdeal.medium.state.d (start = 150.0, min = 0.0, max = 1e5, nominal = 500.0) (339) [ALGB] (3) final Real[3] pipe1.flowModel.roughnesses = pipe1.roughnessesFM (min = {0.0 for $i1 in 1:3}) (340) [ALGB] (3) Real[3] pipe1.flowModel.mus = {pipe1.flowModel.mu_nominal for $i1 in 1:3} (start = {0.001 for $i1 in 1:3}, min = {0.0 for $i1 in 1:3}, max = {1e8 for $i1 in 1:3}, nominal = {0.001 for $i1 in 1:3}) (341) [DISC] (1) Integer[1] pipe1.mediums.phase (fixed = {false for $i1 in 1:1}, start = {1 for $i1 in 1:1}, min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (342) [ALGB] (1) stream Real pipe3.port_a.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (343) [DISC] (1) Boolean $SEV_29 (344) [DISC] (1) Boolean $SEV_28 (345) [DISC] (1) Boolean[1] $SEV_22[$i1] (346) [ALGB] (1) final Real[1] pipe2.heatTransfer.vs = pipe2.vs (347) [DISC] (1) Boolean $SEV_27 (348) [DISC] (1) Boolean $SEV_24 (349) [ALGB] (2) final Real[2] pipe3.flowModel.vs = pipe3.vsFM (350) [DISC] (1) Boolean $SEV_21 (351) [ALGB] (1) protected Real pipe1.flowModel.dp_fric_nominal = sum(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe1.flowModel.WallFriction.pressureLoss_m_flow(pipe1.flowModel.m_flow_nominal / pipe1.flowModel.nParallel, pipe1.flowModel.rho_nominal, pipe1.flowModel.rho_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.pathLengths_internal[$i1], pipe1.flowModel.diameters[$i1], ((pipe1.flowModel.crossAreas[2:3] + pipe1.flowModel.crossAreas[1:2]) / 2.0)[$i1], ((pipe1.flowModel.roughnesses[2:3] + pipe1.flowModel.roughnesses[1:2]) / 2.0)[$i1], pipe1.flowModel.m_flow_small / pipe1.flowModel.nParallel, pipe1.flowModel.Res_turbulent_internal[$i1]) for $i1 in 1:2) (min = 0.0, nominal = 1e5) (352) [DISC] (1) Boolean $SEV_20 (353) [ALGB] (2) flow Real[2] sink.ports.m_flow (min = {-1e60 for $ports1 in 1:2}, max = {1e60 for $ports1 in 1:2}) (354) [ALGB] (1) Real sink.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (355) [ALGB] (1) Real junctionIdeal.medium.state.T (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (356) [ALGB] (1) Real[1] pipe3.flowModel.Res_turbulent_internal = pipe3.flowModel.Re_turbulent * {1.0 for $i1 in 1:1} (357) [ALGB] (2) Real[2] pipe1.flowModel.Is (358) [DISC] (1) final input Integer[1, 1] pipe1.heatTransfer.states.phase = {pipe1.mediums[1].state.phase} (min = {0 for $i1 in 1:1}, max = {2 for $i1 in 1:1}) (359) [ALGB] (1) Real[1] pipe3.mediums.p_bar = {Modelica.SIunits.Conversions.to_bar(pipe3.mediums[1].p)} (360) [ALGB] (2) stream Real[2] sink.ports.h_outflow (start = {1e5 for $i1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {5e5 for $i1 in 1:2}) (361) [ALGB] (1) protected Real valve2.relativeFlowCoefficient (362) [ALGB] (1) Real junctionIdeal.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * junctionIdeal.medium.p_bar) (363) [ALGB] (1) Real[1] pipe3.flowModel.Fs_fg (364) [DISC] (1) Boolean $SEV_17 (365) [DISC] (1) Boolean $SEV_16 (366) [ALGB] (2) Real[2] pipe1.flowModel.dps_fg (start = {(pipe1.flowModel.p_a_start - pipe1.flowModel.p_b_start) / 2.0 for $i1 in 1:2}) (367) [DISC] (1) Boolean $SEV_13 (368) [DISC] (1) Boolean $SEV_12 (369) [DISC] (1) Boolean $SEV_11 (370) [DISC] (1) protected Integer valve2.state_a.phase (min = 0, max = 2) (371) [ALGB] (1) Real junctionIdeal.medium.sat.psat (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (372) [ALGB] (1) Real[1] pipe3.mediums.sat.Tsat (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (373) [ALGB] (1) Real valve1.port_b_T = Modelica.Fluid.Utilities.regStep(valve1.port_b.m_flow, ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.temperature(valve1.state_b), ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.temperature(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.setState_phX(valve1.port_b.p, valve1.port_b.h_outflow, {}, 0, 0)), valve1.m_flow_small) (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (374) [ALGB] (1) stream Real[1] source.ports.h_outflow (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (375) [ALGB] (3) protected Real[3] pipe1.dimensionsFM (376) [ALGB] (3) protected Real[3] pipe1.crossAreasFM (377) [ALGB] (1) Real valve1.dp_turbulent = max(valve1.dp_small, ((ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.dynamicViscosity(valve1.state_a) + ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.dynamicViscosity(valve1.state_b)) ^ 2.0 * 3.141592653589793 * 1.6e7) / (8.0 * valve1.Av * max(valve1.relativeFlowCoefficient, 0.001) * (ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.density(valve1.state_b) + ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.density(valve1.state_a)))) (min = 0.0, nominal = 1e5) (378) [ALGB] (1) flow Real[1] pipe1.heatTransfer.heatPorts.Q_flow (379) [ALGB] (1) Real[1] pipe2.flowModel.Fs_p (380) [ALGB] (2) Real[2] pipe1.flowModel.Fs_p (381) [ALGB] (1) Real[1] pipe3.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (382) [ALGB] (1) final Real[1] pipe2.flowModel.pathLengths = pipe2.pathLengths (383) [DISC] (1) protected Real valveOpening2.b (384) [ALGB] (1) Real[1] pipe2.mediums.p_bar = {Modelica.SIunits.Conversions.to_bar(pipe2.mediums[1].p)} (385) [DISC] (1) protected Real valveOpening2.a (386) [ALGB] (2) Real[2] pipe2.flowModel.rhos = {ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe2.flowModel.Medium.density(pipe2.flowModel.states[$i1]) for $i1 in 1:2} (start = {150.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {500.0 for $i1 in 1:2}) (387) [ALGB] (3) Real[3] pipe1.flowModel.rhos = {ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe1.flowModel.Medium.density(pipe1.flowModel.states[$i1]) for $i1 in 1:3} (start = {150.0 for $i1 in 1:3}, min = {0.0 for $i1 in 1:3}, max = {1e5 for $i1 in 1:3}, nominal = {500.0 for $i1 in 1:3}) (388) [ALGB] (1) Real[1] pipe2.mediums.u (min = {-1e8 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (389) [ALGB] (1) protected Real pipe2.flowModel.dp_fric_nominal = sum({ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe2.flowModel.WallFriction.pressureLoss_m_flow(pipe2.flowModel.m_flow_nominal / pipe2.flowModel.nParallel, pipe2.flowModel.rho_nominal, pipe2.flowModel.rho_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.pathLengths_internal[1], pipe2.flowModel.diameters[1], ((pipe2.flowModel.crossAreas[2:2] + pipe2.flowModel.crossAreas[1:1]) / 2.0)[1], ((pipe2.flowModel.roughnesses[2:2] + pipe2.flowModel.roughnesses[1:1]) / 2.0)[1], pipe2.flowModel.m_flow_small / pipe2.flowModel.nParallel, pipe2.flowModel.Res_turbulent_internal[1])}) (min = 0.0, nominal = 1e5) (390) [ALGB] (1) final input Real[1, 1] pipe1.heatTransfer.states.p = {pipe1.mediums[1].state.p} (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (391) [DISC] (1) Integer pipe1.state_a.phase (min = 0, max = 2) (392) [ALGB] (1) Real valve1.port_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (393) [ALGB] (1) Real[1] source.ports.p (start = {5e6 for $i1 in 1:1}, min = {611.657 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (394) [ALGB] (1) Real[1] pipe2.mediums.p (start = {pipe2.ps_start[1]}, min = {0.0 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}, StateSelect = prefer) (395) [ALGB] (1) final input Real[1, 1] pipe1.heatTransfer.states.h = {pipe1.mediums[1].state.h} (start = {1e5 for $i1 in 1:1}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {5e5 for $i1 in 1:1}) (396) [ALGB] (1) protected Real[1] pipe3.flowModel.diameters = 0.5 * (pipe3.flowModel.dimensions[2:2] + pipe3.flowModel.dimensions[1:1]) (397) [ALGB] (2) Real[2] pipe3.flowModel.mus = {pipe3.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (398) [ALGB] (1) final input Real[1, 1] pipe1.heatTransfer.states.d = {pipe1.mediums[1].state.d} (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (399) [ALGB] (1) protected Real valve1.relativeFlowCoefficient (400) [ALGB] (1) flow Real[1] pipe2.heatTransfer.heatPorts.Q_flow (401) [ALGB] (1) Real[1] pipe2.mediums.h (start = {pipe2.h_start}, StateSelect = prefer) (402) [ALGB] (1) protected Real valve2.minLimiter.y (403) [ALGB] (1) Real[1] pipe2.mediums.d (start = {150.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}, StateSelect = default) (404) [ALGB] (1) Real[1] pipe3.Wb_flows (405) [ALGB] (2) final Real[2] pipe1.flowModel.pathLengths = pipe1.pathLengths (406) [ALGB] (1) Real[1] pipe1.mediums.p_bar = {Modelica.SIunits.Conversions.to_bar(pipe1.mediums[1].p)} (407) [ALGB] (1) Real pipe2.state_b.p (start = 5e6, min = 611.657, max = 1e8, nominal = 1e6) (408) [ALGB] (3) final Real[3] pipe1.flowModel.vs = pipe1.vsFM (409) [ALGB] (2) Real[2] pipe1.flowModel.pathLengths_internal = pipe1.flowModel.pathLengths (410) [ALGB] (1) Real valve1.port_a_T = Modelica.Fluid.Utilities.regStep(-valve1.port_b.m_flow, ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.temperature(valve1.state_a), ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.temperature(ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valve1.Medium.setState_phX(pipe2.port_b.p, valve1.port_a.h_outflow, {}, 0, 0)), valve1.m_flow_small) (start = 500.0, min = 273.15, max = 2273.15, nominal = 500.0) (411) [ALGB] (1) stream Real valve1.port_b.h_outflow (start = 1e5, min = -1e10, max = 1e10, nominal = 5e5) (412) [ALGB] (1) final input Real[1, 1] pipe1.heatTransfer.states.T = {pipe1.mediums[1].state.T} (start = {500.0 for $i1 in 1:1}, min = {273.15 for $i1 in 1:1}, max = {2273.15 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) System Equations (376/521) **************************** (1) [SCAL] (1) $FUN_7 = semiLinear(pipe2.port_a.m_flow, junctionIdeal.port_3.h_outflow, pipe2.mediums[1].h) ($RES_$AUX_431) (2) [SCAL] (1) $SEV_49 = valve2.m_flow_small > 0.0 ($RES_EVT_550) (3) [ARRY] (2) pipe1.flowModel.m_flows = {homotopy(({$FUN_1 for $i1 in 1:2} .* pipe1.flowModel.nParallel)[$i1], (pipe1.flowModel.m_flow_nominal / pipe1.flowModel.dp_nominal * (pipe1.flowModel.dps_fg - pipe1.flowModel.g * pipe1.flowModel.dheights .* pipe1.flowModel.rho_nominal))[$i1]) for $i1 in 1:2} ($RES_SIM_255) (4) [ARRY] (1) pipe2.heatTransfer.Ts = {pipe2.heatTransfer.states.h} ($RES_BND_380) (5) [SCAL] (1) $FUN_8 = semiLinear(valve1.port_b.m_flow, valve1.port_a.h_outflow, pipe2.mediums[1].h) ($RES_$AUX_430) (6) [SCAL] (1) $SEV_50 = (-valve2.port_b.m_flow) > valve2.m_flow_small ($RES_EVT_551) (7) [ARRY] (1) pipe2.heatTransfer.vs = pipe2.vs ($RES_BND_381) (8) [SCAL] (1) $SEV_51 = (-valve2.port_b.m_flow) < (-valve2.m_flow_small) ($RES_EVT_552) (9) [SCAL] (1) $SEV_52 = valve1.port_b.m_flow > valve1.m_flow_small ($RES_EVT_553) (10) [SCAL] (1) $SEV_53 = valve1.port_b.m_flow < (-valve1.m_flow_small) ($RES_EVT_554) (11) [SCAL] (1) $SEV_54 = valve1.m_flow_small > 0.0 ($RES_EVT_555) (12) [ARRY] (1) pipe3.fluidVolumes = {10.0 * pipe3.crossAreas[1]} .* pipe3.nParallel ($RES_BND_385) (13) [SCAL] (1) $SEV_55 = (-valve1.port_b.m_flow) > valve1.m_flow_small ($RES_EVT_556) (14) [ARRY] (1) pipe3.mediums.p_bar = {1e-5 * pipe3.mediums[1].p} ($RES_BND_386) (15) [SCAL] (1) $SEV_56 = (-valve1.port_b.m_flow) < (-valve1.m_flow_small) ($RES_EVT_557) (16) [ARRY] (1) pipe3.mediums.T_degC = {(-273.15) + pipe3.mediums[1].T} ($RES_BND_387) (17) [ARRY] (2) pipe3.flowModel.vs = pipe3.vsFM ($RES_BND_388) (18) [ARRY] (2) pipe3.flowModel.crossAreas = pipe3.crossAreasFM ($RES_BND_389) (19) [FOR-] (2) ($RES_SIM_171) (19) [----] for $i1 in 1:2 loop (19) [----] [SCAL] (1) sink.ports[$i1].h_outflow = sink.medium.h ($RES_SIM_172) (19) [----] end for; (20) [SCAL] (1) sink.medium.h = Modelica.Media.Water.IF97_Utilities.h_pT(sink.p, sink.T, 0) ($RES_SIM_173) (21) [SCAL] (1) $FUN_9 = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe3.flowModel.WallFriction.massFlowRate_dp_staticHead(pipe3.flowModel.dps_fg[1], pipe3.flowModel.rhos[1], pipe3.flowModel.rhos[2], pipe3.flowModel.mus[1], pipe3.flowModel.mus[2], pipe3.flowModel.pathLengths_internal[1], pipe3.flowModel.diameters[1], (pipe3.flowModel.g * pipe3.flowModel.dheights)[1], (0.5 .* (pipe3.flowModel.crossAreas[1:1] + pipe3.flowModel.crossAreas[2:2]))[1], (0.5 .* (pipe3.flowModel.roughnesses[1:1] + pipe3.flowModel.roughnesses[2:2]))[1], pipe3.flowModel.dp_small, pipe3.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_429) (22) [SCAL] (1) $FUN_10 = sum(pipe3.flowModel.dps_fg) ($RES_$AUX_428) (23) [SCAL] (1) $FUN_11 = semiLinear(pipe3.port_a.m_flow, junctionIdeal.port_3.h_outflow, pipe3.mediums[1].h) ($RES_$AUX_427) (24) [SCAL] (1) $FUN_12 = semiLinear(valve2.port_b.m_flow, valve2.port_a.h_outflow, pipe3.mediums[1].h) ($RES_$AUX_426) (25) [TUPL] (4) ($FUN_13, $FUN_14, $FUN_15, $FUN_16) = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valveOpening1.getInterpolationCoefficients(valveOpening1.table, valveOpening1.offset, valveOpening1.startTime, time, valveOpening1.last, 1e-13, valveOpening1.shiftTime) ($RES_$AUX_425) (26) [ARRY] (1) pipe1.mediums.phase = pipe1.mediums.state.phase ($RES_SIM_261) (27) [TUPL] (4) ($FUN_17, $FUN_18, $FUN_19, $FUN_20) = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.valveOpening2.getInterpolationCoefficients(valveOpening2.table, valveOpening2.offset, valveOpening2.startTime, time, valveOpening2.last, 1e-13, valveOpening2.shiftTime) ($RES_$AUX_424) (28) [ARRY] (1) pipe1.mediums.d = pipe1.mediums.state.d ($RES_SIM_262) (29) [SCAL] (1) $FUN_21 = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe3.flowModel.WallFriction.pressureLoss_m_flow(pipe3.flowModel.m_flow_nominal / pipe3.flowModel.nParallel, pipe3.flowModel.rho_nominal, pipe3.flowModel.rho_nominal, pipe3.flowModel.mu_nominal, pipe3.flowModel.mu_nominal, pipe3.flowModel.pathLengths_internal[1], pipe3.flowModel.diameters[1], (0.5 .* (pipe3.flowModel.crossAreas[2:2] + pipe3.flowModel.crossAreas[1:1]))[1], (0.5 .* (pipe3.flowModel.roughnesses[2:2] + pipe3.flowModel.roughnesses[1:1]))[1], pipe3.flowModel.m_flow_small / pipe3.flowModel.nParallel, pipe3.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_423) (30) [ARRY] (1) pipe1.mediums.T = pipe1.mediums.state.T ($RES_SIM_263) (31) [SCAL] (1) pipe3.flowModel.dp_fric_nominal = sum({$FUN_21}) ($RES_$AUX_422) (32) [ARRY] (1) pipe1.mediums.p = pipe1.mediums.state.p ($RES_SIM_264) (33) [SCAL] (1) $FUN_23 = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe2.flowModel.WallFriction.pressureLoss_m_flow(pipe2.flowModel.m_flow_nominal / pipe2.flowModel.nParallel, pipe2.flowModel.rho_nominal, pipe2.flowModel.rho_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.mu_nominal, pipe2.flowModel.pathLengths_internal[1], pipe2.flowModel.diameters[1], (0.5 .* (pipe2.flowModel.crossAreas[2:2] + pipe2.flowModel.crossAreas[1:1]))[1], (0.5 .* (pipe2.flowModel.roughnesses[2:2] + pipe2.flowModel.roughnesses[1:1]))[1], pipe2.flowModel.m_flow_small / pipe2.flowModel.nParallel, pipe2.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_421) (34) [ARRY] (1) pipe1.mediums.h = pipe1.mediums.state.h ($RES_SIM_265) (35) [ARRY] (2) pipe3.flowModel.dimensions = pipe3.dimensionsFM ($RES_BND_390) (36) [SCAL] (1) pipe2.flowModel.dp_fric_nominal = sum({$FUN_23}) ($RES_$AUX_420) (37) [ARRY] (2) pipe3.flowModel.roughnesses = pipe3.roughnessesFM ($RES_BND_391) (38) [SCAL] (1) pipe1.mediums[1].u = pipe1.mediums[1].h - pipe1.mediums[1].p / pipe1.mediums[1].d ($RES_SIM_267) (39) [ARRY] (1) pipe3.flowModel.dheights = pipe3.dheightsFM ($RES_BND_392) (40) [ARRY] (1) pipe1.mediums.sat.psat = pipe1.mediums.p ($RES_SIM_268) (41) [ARRY] (1) pipe3.flowModel.pathLengths = pipe3.pathLengths ($RES_BND_393) (42) [SCAL] (1) pipe1.mediums[1].sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(pipe1.mediums[1].p) ($RES_SIM_269) (43) [FOR-] (2) ($RES_BND_394) (43) [----] for $i1 in 1:2 loop (43) [----] [SCAL] (1) pipe3.flowModel.rhos[$i1] = pipe3.flowModel.states.d ($RES_BND_395) (43) [----] end for; (44) [FOR-] (2) ($RES_BND_396) (44) [----] for $i1 in 1:2 loop (44) [----] [SCAL] (1) pipe3.flowModel.mus[$i1] = pipe3.flowModel.mu_nominal ($RES_BND_397) (44) [----] end for; (45) [ARRY] (1) pipe3.flowModel.pathLengths_internal = pipe3.flowModel.pathLengths ($RES_BND_398) (46) [SCAL] (1) pipe3.flowModel.Res_turbulent_internal[1] = pipe3.flowModel.Re_turbulent ($RES_BND_399) (47) [SCAL] (1) sink.medium.phase = sink.medium.state.phase ($RES_SIM_183) (48) [SCAL] (1) sink.medium.d = sink.medium.state.d ($RES_SIM_184) (49) [SCAL] (1) -((-273.15) - sink.medium.T_degC) = sink.medium.state.T ($RES_SIM_185) (50) [SCAL] (1) sink.medium.h = sink.medium.state.h ($RES_SIM_187) (51) [SCAL] (1) sink.medium.u = sink.medium.h - sink.p / sink.medium.d ($RES_SIM_189) (52) [SCAL] (1) $FUN_25 = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe1.flowModel.WallFriction.pressureLoss_m_flow(pipe1.flowModel.m_flow_nominal / pipe1.flowModel.nParallel, pipe1.flowModel.rho_nominal, pipe1.flowModel.rho_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.mu_nominal, pipe1.flowModel.pathLengths_internal[$i1], pipe1.flowModel.diameters[$i1], (0.5 .* (pipe1.flowModel.crossAreas[2:3] + pipe1.flowModel.crossAreas[1:2]))[$i1], (0.5 .* (pipe1.flowModel.roughnesses[2:3] + pipe1.flowModel.roughnesses[1:2]))[$i1], pipe1.flowModel.m_flow_small / pipe1.flowModel.nParallel, pipe1.flowModel.Res_turbulent_internal[$i1]) ($RES_$AUX_419) (53) [SCAL] (1) pipe1.flowModel.dp_fric_nominal = sum($FUN_25 for $i1 in 1:2) ($RES_$AUX_418) (54) [SCAL] (1) pipe1.state_a.phase = 0 ($RES_SIM_443) (55) [SCAL] (1) pipe1.state_a.h = source.ports[1].h_outflow ($RES_SIM_444) (56) [SCAL] (1) pipe1.mediums[1].T = Modelica.Media.Water.IF97_Utilities.T_props_ph(pipe1.mediums[1].p, pipe1.mediums[1].h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(pipe1.mediums[1].p, pipe1.mediums[1].h, pipe1.mediums[1].phase, 0)) ($RES_SIM_270) (57) [SCAL] (1) pipe1.state_a.d = Modelica.Media.Water.IF97_Utilities.rho_ph(pipe1.port_a.p, source.ports[1].h_outflow, 0, 0) ($RES_SIM_445) (58) [SCAL] (1) pipe1.mediums[1].d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(pipe1.mediums[1].p, pipe1.mediums[1].h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(pipe1.mediums[1].p, pipe1.mediums[1].h, pipe1.mediums[1].phase, 0)) ($RES_SIM_271) (59) [SCAL] (1) pipe1.state_a.T = Modelica.Media.Water.IF97_Utilities.T_ph(pipe1.port_a.p, source.ports[1].h_outflow, 0, 0) ($RES_SIM_446) (60) [SCAL] (1) pipe1.mediums[1].phase = if $SEV_43 then 1 else 2 ($RES_SIM_272) (61) [SCAL] (1) pipe1.state_a.p = pipe1.port_a.p ($RES_SIM_447) (62) [SCAL] (1) pipe1.state_b.phase = 0 ($RES_SIM_448) (63) [SCAL] (1) source.ports[1].p = source.p ($RES_SIM_274) (64) [SCAL] (1) pipe1.state_b.h = junctionIdeal.port_3.h_outflow ($RES_SIM_449) (65) [SCAL] (1) source.ports[1].h_outflow = source.medium.h ($RES_SIM_275) (66) [SCAL] (1) source.medium.h = Modelica.Media.Water.IF97_Utilities.h_pT(source.p, source.T, 0) ($RES_SIM_276) (67) [SCAL] (1) sink.medium.sat.psat = sink.p ($RES_SIM_190) (68) [SCAL] (1) -((-273.15) - sink.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(sink.p, sink.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(sink.p, sink.medium.h, sink.medium.phase, 0)) ($RES_SIM_192) (69) [SCAL] (1) sink.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(sink.p, sink.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(sink.p, sink.medium.h, sink.medium.phase, 0)) ($RES_SIM_193) (70) [SCAL] (1) sink.medium.phase = if $SEV_27 then 1 else 2 ($RES_SIM_194) (71) [SCAL] (1) valve2.dp = pipe3.port_b.p - valve2.port_b.p ($RES_SIM_198) (72) [SCAL] (1) pipe1.state_b.d = Modelica.Media.Water.IF97_Utilities.rho_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, 0, 0) ($RES_SIM_450) (73) [SCAL] (1) pipe1.state_b.T = Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, 0, 0) ($RES_SIM_451) (74) [SCAL] (1) pipe1.state_b.p = 99999.99999999999 * junctionIdeal.medium.p_bar ($RES_SIM_452) (75) [SCAL] (1) valve1.state_a.phase = 0 ($RES_SIM_453) (76) [SCAL] (1) valve1.state_a.h = valve1.port_b.h_outflow ($RES_SIM_454) (77) [SCAL] (1) valve1.state_a.d = Modelica.Media.Water.IF97_Utilities.rho_ph(pipe2.port_b.p, valve1.port_b.h_outflow, 0, 0) ($RES_SIM_455) (78) [SCAL] (1) valve1.state_a.T = Modelica.Media.Water.IF97_Utilities.T_ph(pipe2.port_b.p, valve1.port_b.h_outflow, 0, 0) ($RES_SIM_456) (79) [SCAL] (1) valve1.state_a.p = pipe2.port_b.p ($RES_SIM_457) (80) [SCAL] (1) valve1.state_b.phase = 0 ($RES_SIM_458) (81) [SCAL] (1) valve1.state_b.h = sink.ports[1].h_outflow ($RES_SIM_459) (82) [SCAL] (1) source.medium.phase = source.medium.state.phase ($RES_SIM_286) (83) [SCAL] (1) source.medium.d = source.medium.state.d ($RES_SIM_287) (84) [SCAL] (1) -((-273.15) - source.medium.T_degC) = source.medium.state.T ($RES_SIM_288) (85) [SCAL] (1) valve1.state_b.d = Modelica.Media.Water.IF97_Utilities.rho_ph(valve1.port_b.p, sink.ports[1].h_outflow, 0, 0) ($RES_SIM_460) (86) [SCAL] (1) valve1.state_b.T = Modelica.Media.Water.IF97_Utilities.T_ph(valve1.port_b.p, sink.ports[1].h_outflow, 0, 0) ($RES_SIM_461) (87) [SCAL] (1) valve1.state_b.p = valve1.port_b.p ($RES_SIM_462) (88) [SCAL] (1) valve2.state_a.phase = 0 ($RES_SIM_463) (89) [SCAL] (1) valve2.state_a.h = valve2.port_b.h_outflow ($RES_SIM_464) (90) [SCAL] (1) source.medium.h = source.medium.state.h ($RES_SIM_290) (91) [SCAL] (1) valve2.state_a.d = Modelica.Media.Water.IF97_Utilities.rho_ph(pipe3.port_b.p, valve2.port_b.h_outflow, 0, 0) ($RES_SIM_465) (92) [SCAL] (1) valve2.state_a.T = Modelica.Media.Water.IF97_Utilities.T_ph(pipe3.port_b.p, valve2.port_b.h_outflow, 0, 0) ($RES_SIM_466) (93) [SCAL] (1) source.medium.u = source.medium.h - source.p / source.medium.d ($RES_SIM_292) (94) [SCAL] (1) valve2.state_a.p = pipe3.port_b.p ($RES_SIM_467) (95) [SCAL] (1) source.medium.sat.psat = source.p ($RES_SIM_293) (96) [SCAL] (1) valve2.state_b.phase = 0 ($RES_SIM_468) (97) [SCAL] (1) valve2.state_b.h = sink.ports[2].h_outflow ($RES_SIM_469) (98) [SCAL] (1) -((-273.15) - source.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(source.p, source.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(source.p, source.medium.h, source.medium.phase, 0)) ($RES_SIM_295) (99) [SCAL] (1) source.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(source.p, source.medium.h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(source.p, source.medium.h, source.medium.phase, 0)) ($RES_SIM_296) (100) [SCAL] (1) source.medium.phase = if $SEV_46 then 1 else 2 ($RES_SIM_297) (101) [SCAL] (1) valve2.state_b.d = Modelica.Media.Water.IF97_Utilities.rho_ph(valve2.port_b.p, sink.ports[2].h_outflow, 0, 0) ($RES_SIM_470) (102) [SCAL] (1) valve2.state_b.T = Modelica.Media.Water.IF97_Utilities.T_ph(valve2.port_b.p, sink.ports[2].h_outflow, 0, 0) ($RES_SIM_471) (103) [SCAL] (1) valve2.state_b.p = valve2.port_b.p ($RES_SIM_472) (104) [SCAL] (1) pipe2.state_a.phase = 0 ($RES_SIM_473) (105) [SCAL] (1) pipe2.state_a.h = junctionIdeal.port_3.h_outflow ($RES_SIM_474) (106) [SCAL] (1) pipe2.state_a.d = Modelica.Media.Water.IF97_Utilities.rho_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, 0, 0) ($RES_SIM_475) (107) [SCAL] (1) pipe2.state_a.T = Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, 0, 0) ($RES_SIM_476) (108) [SCAL] (1) pipe2.state_a.p = 99999.99999999999 * junctionIdeal.medium.p_bar ($RES_SIM_477) (109) [SCAL] (1) pipe2.state_b.h = valve1.port_a.h_outflow ($RES_SIM_479) (110) [ALGO] (5) ($RES_SIM_22) (110) [----] assert(not (valveOpening2.table[1, 1] > 0.0 or valveOpening2.table[1, 1] < 0.0), "The first point in time has to be set to 0, but is table[1,1] = " + String(valveOpening2.table[1, 1], 6, 0, true), AssertionLevel.error); (110) [----] when {time >= $PRE.valveOpening2.nextEvent, initial()} then (110) [----] (valveOpening2.a, valveOpening2.b, valveOpening2.nextEventScaled, valveOpening2.last) := ($FUN_17, $FUN_18, $FUN_19, $FUN_20); (110) [----] valveOpening2.nextEvent := valveOpening2.nextEventScaled; (110) [----] end when; (111) [ALGO] (5) ($RES_SIM_23) (111) [----] assert(not (valveOpening1.table[1, 1] > 0.0 or valveOpening1.table[1, 1] < 0.0), "The first point in time has to be set to 0, but is table[1,1] = " + String(valveOpening1.table[1, 1], 6, 0, true), AssertionLevel.error); (111) [----] when {time >= $PRE.valveOpening1.nextEvent, initial()} then (111) [----] (valveOpening1.a, valveOpening1.b, valveOpening1.nextEventScaled, valveOpening1.last) := ($FUN_13, $FUN_14, $FUN_15, $FUN_16); (111) [----] valveOpening1.nextEvent := valveOpening1.nextEventScaled; (111) [----] end when; (112) [SCAL] (1) $DER.junctionIdeal.m = junctionIdeal.mb_flow ($RES_SIM_24) (113) [SCAL] (1) pipe2.state_b.d = Modelica.Media.Water.IF97_Utilities.rho_ph(pipe2.port_b.p, valve1.port_a.h_outflow, 0, 0) ($RES_SIM_480) (114) [SCAL] (1) $DER.junctionIdeal.U = junctionIdeal.Hb_flow ($RES_SIM_25) (115) [SCAL] (1) pipe2.state_b.T = Modelica.Media.Water.IF97_Utilities.T_ph(pipe2.port_b.p, valve1.port_a.h_outflow, 0, 0) ($RES_SIM_481) (116) [SCAL] (1) junctionIdeal.U = junctionIdeal.m * junctionIdeal.medium.u ($RES_SIM_26) (117) [SCAL] (1) pipe2.state_b.p = pipe2.port_b.p ($RES_SIM_482) (118) [SCAL] (1) junctionIdeal.m = junctionIdeal.V * junctionIdeal.medium.d ($RES_SIM_27) (119) [SCAL] (1) pipe3.state_a.phase = 0 ($RES_SIM_483) (120) [SCAL] (1) pipe3.state_a.h = junctionIdeal.port_3.h_outflow ($RES_SIM_484) (121) [SCAL] (1) pipe3.state_a.d = Modelica.Media.Water.IF97_Utilities.rho_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, 0, 0) ($RES_SIM_485) (122) [SCAL] (1) pipe3.state_a.T = Modelica.Media.Water.IF97_Utilities.T_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, 0, 0) ($RES_SIM_486) (123) [SCAL] (1) pipe3.state_a.p = 99999.99999999999 * junctionIdeal.medium.p_bar ($RES_SIM_487) (124) [SCAL] (1) pipe3.state_b.h = valve2.port_a.h_outflow ($RES_SIM_489) (125) [SCAL] (1) junctionIdeal.Hb_flow = smooth(0, -pipe2.port_a.m_flow * (if $SEV_11 then pipe2.port_a.h_outflow else junctionIdeal.port_3.h_outflow)) + smooth(0, -pipe3.port_a.m_flow * (if $SEV_12 then pipe3.port_a.h_outflow else junctionIdeal.port_3.h_outflow)) + smooth(0, -pipe1.port_b.m_flow * (if $SEV_13 then pipe1.port_b.h_outflow else junctionIdeal.port_3.h_outflow)) ($RES_SIM_30) (126) [SCAL] (1) junctionIdeal.mb_flow = -(pipe2.port_a.m_flow + pipe3.port_a.m_flow + pipe1.port_b.m_flow) ($RES_SIM_34) (127) [SCAL] (1) pipe3.state_b.d = Modelica.Media.Water.IF97_Utilities.rho_ph(pipe3.port_b.p, valve2.port_a.h_outflow, 0, 0) ($RES_SIM_490) (128) [SCAL] (1) pipe3.state_b.T = Modelica.Media.Water.IF97_Utilities.T_ph(pipe3.port_b.p, valve2.port_a.h_outflow, 0, 0) ($RES_SIM_491) (129) [SCAL] (1) pipe3.state_b.p = pipe3.port_b.p ($RES_SIM_492) (130) [SCAL] (1) junctionIdeal.medium.phase = junctionIdeal.medium.state.phase ($RES_SIM_42) (131) [SCAL] (1) junctionIdeal.medium.d = junctionIdeal.medium.state.d ($RES_SIM_43) (132) [SCAL] (1) -((-273.15) - junctionIdeal.medium.T_degC) = junctionIdeal.medium.state.T ($RES_SIM_44) (133) [SCAL] (1) 99999.99999999999 * junctionIdeal.medium.p_bar = junctionIdeal.medium.state.p ($RES_SIM_45) (134) [SCAL] (1) junctionIdeal.port_3.h_outflow = junctionIdeal.medium.state.h ($RES_SIM_46) (135) [SCAL] (1) junctionIdeal.medium.u = junctionIdeal.port_3.h_outflow - (99999.99999999999 * junctionIdeal.medium.p_bar) / junctionIdeal.medium.d ($RES_SIM_48) (136) [SCAL] (1) junctionIdeal.medium.sat.psat = 99999.99999999999 * junctionIdeal.medium.p_bar ($RES_SIM_49) (137) [SCAL] (1) junctionIdeal.medium.sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(99999.99999999999 * junctionIdeal.medium.p_bar) ($RES_SIM_50) (138) [SCAL] (1) -((-273.15) - junctionIdeal.medium.T_degC) = Modelica.Media.Water.IF97_Utilities.T_props_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, junctionIdeal.medium.phase, 0)) ($RES_SIM_51) (139) [SCAL] (1) junctionIdeal.medium.d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(99999.99999999999 * junctionIdeal.medium.p_bar, junctionIdeal.port_3.h_outflow, junctionIdeal.medium.phase, 0)) ($RES_SIM_52) (140) [SCAL] (1) junctionIdeal.medium.phase = if $SEV_16 then 1 else 2 ($RES_SIM_53) (141) [SCAL] (1) valve2.relativeFlowCoefficient = valveOpening2.a * time + valveOpening2.b ($RES_SIM_55) (142) [SCAL] (1) valve1.relativeFlowCoefficient = valveOpening1.a * time + valveOpening1.b ($RES_SIM_57) (143) [SCAL] (1) $DER.pipe3.ms[1] = pipe3.mb_flows[1] ($RES_SIM_59) (144) [ARRY] (1) pipe3.flowModel.diameters = 0.5 * (pipe3.flowModel.dimensions[2:2] + pipe3.flowModel.dimensions[1:1]) ($RES_BND_400) (145) [ARRY] (1) pipe3.mediums.phase = pipe3.mediums.state.phase ($RES_SIM_101) (146) [ARRY] (1) pipe3.vs = {(0.5 * (pipe3.m_flows[2] + pipe3.m_flows[1])) / (pipe3.crossAreas[1] * pipe3.mediums[1].d)} / pipe3.nParallel ($RES_BND_402) (147) [ARRY] (1) pipe3.mediums.d = pipe3.mediums.state.d ($RES_SIM_102) (148) [ARRY] (1) pipe3.mediums.T = pipe3.mediums.state.T ($RES_SIM_103) (149) [ARRY] (1) pipe3.heatTransfer.Ts = {pipe3.heatTransfer.states.h} ($RES_BND_404) (150) [ARRY] (1) pipe3.mediums.p = pipe3.mediums.state.p ($RES_SIM_104) (151) [ARRY] (1) pipe3.heatTransfer.vs = pipe3.vs ($RES_BND_405) (152) [ARRY] (1) pipe3.mediums.h = pipe3.mediums.state.h ($RES_SIM_105) (153) [SCAL] (1) pipe3.mediums[1].u = pipe3.mediums[1].h - pipe3.mediums[1].p / pipe3.mediums[1].d ($RES_SIM_107) (154) [ARRY] (1) pipe3.mediums.sat.psat = pipe3.mediums.p ($RES_SIM_108) (155) [SCAL] (1) pipe3.mediums[1].sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(pipe3.mediums[1].p) ($RES_SIM_109) (156) [SCAL] (1) $DER.pipe3.Us[1] = pipe3.Wb_flows[1] + pipe3.Hb_flows[1] + pipe3.Qb_flows[1] ($RES_SIM_60) (157) [SCAL] (1) pipe3.ms[1] = pipe3.fluidVolumes[1] * pipe3.mediums[1].d ($RES_SIM_61) (158) [SCAL] (1) pipe3.Us[1] = pipe3.ms[1] * pipe3.mediums[1].u ($RES_SIM_62) (159) [SCAL] (1) pipe3.port_b.p = pipe3.mediums[1].p ($RES_SIM_63) (160) [ARRY] (1) pipe3.vsFM[2:2] = pipe3.vs ($RES_SIM_64) (161) [SCAL] (1) pipe3.vsFM[1] = ((pipe3.m_flows[1] / pipe3.state_a.d) / pipe3.crossAreas[1]) / pipe3.nParallel ($RES_SIM_65) (162) [ARRY] (1) pipe3.m_flows[1:1] = pipe3.flowModel.m_flows[:] ($RES_SIM_66) (163) [ARRY] (5) pipe3.statesFM[2:2] = pipe3.mediums[:].state ($RES_SIM_67) (164) [RECD] (5) pipe3.statesFM[1] = pipe3.state_a ($RES_SIM_68) (165) [ARRY] (1) pipe1.fluidVolumes = {10.0 * pipe1.crossAreas[1]} .* pipe1.nParallel ($RES_BND_326) (166) [ARRY] (1) pipe1.mediums.p_bar = {1e-5 * pipe1.mediums[1].p} ($RES_BND_327) (167) [ARRY] (1) pipe1.mediums.T_degC = {(-273.15) + pipe1.mediums[1].T} ($RES_BND_328) (168) [ARRY] (3) pipe1.flowModel.vs = pipe1.vsFM ($RES_BND_329) (169) [SCAL] (1) pipe3.mediums[1].T = Modelica.Media.Water.IF97_Utilities.T_props_ph(pipe3.mediums[1].p, pipe3.mediums[1].h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(pipe3.mediums[1].p, pipe3.mediums[1].h, pipe3.mediums[1].phase, 0)) ($RES_SIM_110) (170) [SCAL] (1) pipe3.mediums[1].d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(pipe3.mediums[1].p, pipe3.mediums[1].h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(pipe3.mediums[1].p, pipe3.mediums[1].h, pipe3.mediums[1].phase, 0)) ($RES_SIM_111) (171) [SCAL] (1) pipe3.mediums[1].phase = if $SEV_20 then 1 else 2 ($RES_SIM_112) (172) [ARRY] (15) pipe1.flowModel.states = pipe1.statesFM ($RES_BND_412) (173) [ARRY] (5) pipe1.heatTransfer.states = pipe1.mediums.state ($RES_BND_413) (174) [SCAL] (1) $DER.pipe2.ms[1] = pipe2.mb_flows[1] ($RES_SIM_114) (175) [ARRY] (10) pipe2.flowModel.states = pipe2.statesFM ($RES_BND_414) (176) [SCAL] (1) $DER.pipe2.Us[1] = pipe2.Wb_flows[1] + pipe2.Hb_flows[1] + pipe2.Qb_flows[1] ($RES_SIM_115) (177) [ARRY] (5) pipe2.heatTransfer.states = pipe2.mediums.state ($RES_BND_415) (178) [SCAL] (1) pipe2.ms[1] = pipe2.fluidVolumes[1] * pipe2.mediums[1].d ($RES_SIM_116) (179) [ARRY] (10) pipe3.flowModel.states = pipe3.statesFM ($RES_BND_416) (180) [SCAL] (1) pipe2.Us[1] = pipe2.ms[1] * pipe2.mediums[1].u ($RES_SIM_117) (181) [ARRY] (5) pipe3.heatTransfer.states = pipe3.mediums.state ($RES_BND_417) (182) [SCAL] (1) pipe2.port_b.p = pipe2.mediums[1].p ($RES_SIM_118) (183) [ARRY] (1) pipe2.vsFM[2:2] = pipe2.vs ($RES_SIM_119) (184) [SCAL] (1) valve2.port_b.h_outflow = pipe3.mediums[1].h ($RES_SIM_71) (185) [SCAL] (1) pipe3.port_a.h_outflow = pipe3.mediums[1].h ($RES_SIM_72) (186) [SCAL] (1) valve2.port_b.m_flow = -pipe3.m_flows[2] ($RES_SIM_73) (187) [SCAL] (1) valve2.port_a.h_outflow = sink.ports[2].h_outflow ($RES_SIM_202) (188) [SCAL] (1) pipe3.port_a.m_flow = pipe3.m_flows[1] ($RES_SIM_74) (189) [SCAL] (1) -valve2.port_b.m_flow = homotopy(valve2.Av * valve2.relativeFlowCoefficient * smooth(2, if $SEV_28 then (if $SEV_29 then sqrt(valve2.state_a.d) else 0.0) * sqrt(valve2.dp) else if $SEV_30 then -(if $SEV_31 then sqrt(valve2.state_b.d) else 0.0) * sqrt(abs(valve2.dp)) else if $SEV_32 then Modelica.Fluid.Utilities.regRoot2.regRoot2_utility(valve2.dp, valve2.dp_turbulent, valve2.state_a.d, valve2.state_b.d, false, 1.0) else -Modelica.Fluid.Utilities.regRoot2.regRoot2_utility(-valve2.dp, valve2.dp_turbulent, valve2.state_b.d, valve2.state_a.d, false, 1.0)), (valve2.dp * valve2.m_flow_nominal * valve2.relativeFlowCoefficient) / valve2.dp_nominal) ($RES_SIM_203) (190) [SCAL] (1) pipe3.H_flows[2] = -$FUN_12 ($RES_SIM_75) (191) [SCAL] (1) pipe3.H_flows[1] = $FUN_11 ($RES_SIM_76) (192) [ARRY] (3) pipe1.flowModel.crossAreas = pipe1.crossAreasFM ($RES_BND_330) (193) [SCAL] (1) pipe3.mb_flows[1] = pipe3.m_flows[1] - pipe3.m_flows[2] ($RES_SIM_77) (194) [SCAL] (1) valve2.minLimiter.y = smooth(0, noEvent(if $SEV_33 then valve2.minLimiter.uMin else valve2.relativeFlowCoefficient)) ($RES_SIM_205) (195) [ARRY] (3) pipe1.flowModel.dimensions = pipe1.dimensionsFM ($RES_BND_331) (196) [SCAL] (1) pipe3.Hb_flows[1] = pipe3.H_flows[1] - pipe3.H_flows[2] ($RES_SIM_78) (197) [ARRY] (3) pipe1.flowModel.roughnesses = pipe1.roughnessesFM ($RES_BND_332) (198) [ARRY] (2) pipe3.roughnessesFM[:] = {pipe3.roughnesses[1], pipe3.roughnesses[1]} ($RES_SIM_79) (199) [SCAL] (1) $TEV_0 = $PRE.valveOpening2.nextEvent ($RES_EVT_503) (200) [ARRY] (2) pipe1.flowModel.dheights = pipe1.dheightsFM ($RES_BND_333) (201) [SCAL] (1) valve1.dp = pipe2.port_b.p - valve1.port_b.p ($RES_SIM_208) (202) [SCAL] (1) $TEV_1 = $PRE.valveOpening1.nextEvent ($RES_EVT_504) (203) [ARRY] (2) pipe1.flowModel.pathLengths = pipe1.pathLengths ($RES_BND_334) (204) [FOR-] (2) ($RES_EVT_505) (204) [----] for $i1 in 1:2 loop (204) [----] [SCAL] (1) $SEV_0[$i1] = abs(pipe3.flowModel.crossAreas[$i1] - 0.7853981633974483 * pipe3.flowModel.dimensions[$i1] ^ 2.0) < 1e-10 * pipe3.flowModel.crossAreas[$i1] ($RES_EVT_506) (204) [----] end for; (205) [FOR-] (3) ($RES_BND_335) (205) [----] for $i1 in 1:3 loop (205) [----] [SCAL] (1) pipe1.flowModel.rhos[$i1] = pipe1.flowModel.states.d ($RES_BND_336) (205) [----] end for; (206) [FOR-] (2) ($RES_EVT_507) (206) [----] for $i1 in 1:2 loop (206) [----] [SCAL] (1) $SEV_1[$i1] = abs(pipe2.flowModel.crossAreas[$i1] - 0.7853981633974483 * pipe2.flowModel.dimensions[$i1] ^ 2.0) < 1e-10 * pipe2.flowModel.crossAreas[$i1] ($RES_EVT_508) (206) [----] end for; (207) [FOR-] (3) ($RES_BND_337) (207) [----] for $i1 in 1:3 loop (207) [----] [SCAL] (1) pipe1.flowModel.mus[$i1] = pipe1.flowModel.mu_nominal ($RES_BND_338) (207) [----] end for; (208) [FOR-] (3) ($RES_EVT_509) (208) [----] for $i1 in 1:3 loop (208) [----] [SCAL] (1) $SEV_2[$i1] = abs(pipe1.flowModel.crossAreas[$i1] - 0.7853981633974483 * pipe1.flowModel.dimensions[$i1] ^ 2.0) < 1e-10 * pipe1.flowModel.crossAreas[$i1] ($RES_EVT_510) (208) [----] end for; (209) [ARRY] (2) pipe1.flowModel.pathLengths_internal = pipe1.flowModel.pathLengths ($RES_BND_339) (210) [SCAL] (1) pipe2.vsFM[1] = ((pipe2.m_flows[1] / pipe2.state_a.d) / pipe2.crossAreas[1]) / pipe2.nParallel ($RES_SIM_120) (211) [ARRY] (1) pipe2.m_flows[1:1] = pipe2.flowModel.m_flows[:] ($RES_SIM_121) (212) [ARRY] (5) pipe2.statesFM[2:2] = pipe2.mediums[:].state ($RES_SIM_122) (213) [RECD] (5) pipe2.statesFM[1] = pipe2.state_a ($RES_SIM_123) (214) [SCAL] (1) valve1.port_b.h_outflow = pipe2.mediums[1].h ($RES_SIM_126) (215) [SCAL] (1) pipe2.port_a.h_outflow = pipe2.mediums[1].h ($RES_SIM_127) (216) [SCAL] (1) valve1.port_b.m_flow = -pipe2.m_flows[2] ($RES_SIM_128) (217) [SCAL] (1) pipe2.port_a.m_flow = pipe2.m_flows[1] ($RES_SIM_129) (218) [ARRY] (2) pipe3.dimensionsFM[:] = {pipe3.dimensions[1], pipe3.dimensions[1]} ($RES_SIM_80) (219) [ARRY] (2) pipe3.crossAreasFM[:] = {pipe3.crossAreas[1], pipe3.crossAreas[1]} ($RES_SIM_81) (220) [ARRY] (1) pipe3.dheightsFM[:] = {0.0} ($RES_SIM_82) (221) [ARRY] (1) pipe3.pathLengths[:] = {10.0} ($RES_SIM_83) (222) [SCAL] (1) valve1.port_a.h_outflow = sink.ports[1].h_outflow ($RES_SIM_212) (223) [ARRY] (1) pipe3.Wb_flows = (pipe3.crossAreas * pipe3.vs * (($FUN_10 + pipe3.port_b.p) - ((system.g * {0.0}) / pipe3.mediums.d + 99999.99999999999 * junctionIdeal.medium.p_bar))) / ({1.0} * {1.0}) .* {1.0} .* pipe3.nParallel ($RES_SIM_84) (224) [SCAL] (1) -valve1.port_b.m_flow = homotopy(valve1.Av * valve1.relativeFlowCoefficient * smooth(2, if $SEV_34 then (if $SEV_35 then sqrt(valve1.state_a.d) else 0.0) * sqrt(valve1.dp) else if $SEV_36 then -(if $SEV_37 then sqrt(valve1.state_b.d) else 0.0) * sqrt(abs(valve1.dp)) else if $SEV_38 then Modelica.Fluid.Utilities.regRoot2.regRoot2_utility(valve1.dp, valve1.dp_turbulent, valve1.state_a.d, valve1.state_b.d, false, 1.0) else -Modelica.Fluid.Utilities.regRoot2.regRoot2_utility(-valve1.dp, valve1.dp_turbulent, valve1.state_b.d, valve1.state_a.d, false, 1.0)), (valve1.dp * valve1.m_flow_nominal * valve1.relativeFlowCoefficient) / valve1.dp_nominal) ($RES_SIM_213) (225) [ARRY] (1) pipe3.Qb_flows = pipe3.heatTransfer.Q_flows ($RES_SIM_85) (226) [ARRY] (1) pipe3.heatTransfer.Q_flows = pipe3.heatTransfer.heatPorts.Q_flow ($RES_SIM_86) (227) [SCAL] (1) valve1.minLimiter.y = smooth(0, noEvent(if $SEV_39 then valve1.minLimiter.uMin else valve1.relativeFlowCoefficient)) ($RES_SIM_215) (228) [FOR-] (2) ($RES_BND_340) (228) [----] for $i1 in 1:2 loop (228) [----] [SCAL] (1) pipe1.flowModel.Res_turbulent_internal[$i1] = pipe1.flowModel.Re_turbulent ($RES_BND_341) (228) [----] end for; (229) [ARRY] (1) pipe3.heatTransfer.Ts = pipe3.heatTransfer.heatPorts.T ($RES_SIM_87) (230) [SCAL] (1) $SEV_11 = (-pipe2.port_a.m_flow) > 0.0 ($RES_EVT_511) (231) [SCAL] (1) $DER.pipe1.ms[1] = pipe1.mb_flows[1] ($RES_SIM_216) (232) [ARRY] (1) {0.0} = pipe3.flowModel.Ib_flows - (pipe3.flowModel.Fs_fg + pipe3.flowModel.Fs_p) ($RES_SIM_88) (233) [SCAL] (1) $SEV_12 = (-pipe3.port_a.m_flow) > 0.0 ($RES_EVT_512) (234) [SCAL] (1) $DER.pipe1.Us[1] = pipe1.Wb_flows[1] + pipe1.Hb_flows[1] + pipe1.Qb_flows[1] ($RES_SIM_217) (235) [ARRY] (2) pipe1.flowModel.diameters = 0.5 * (pipe1.flowModel.dimensions[2:3] + pipe1.flowModel.dimensions[1:2]) ($RES_BND_342) (236) [ARRY] (1) pipe3.flowModel.Is = {pipe3.flowModel.m_flows[1] * pipe3.flowModel.pathLengths[1]} ($RES_SIM_89) (237) [SCAL] (1) $SEV_13 = (-pipe1.port_b.m_flow) > 0.0 ($RES_EVT_513) (238) [SCAL] (1) pipe1.ms[1] = pipe1.fluidVolumes[1] * pipe1.mediums[1].d ($RES_SIM_218) (239) [SCAL] (1) pipe1.Us[1] = pipe1.ms[1] * pipe1.mediums[1].u ($RES_SIM_219) (240) [ARRY] (1) pipe1.vs = {(0.5 * (pipe1.m_flows[2] + pipe1.m_flows[1])) / (pipe1.crossAreas[1] * pipe1.mediums[1].d)} / pipe1.nParallel ($RES_BND_344) (241) [SCAL] (1) $SEV_16 = (junctionIdeal.port_3.h_outflow < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(junctionIdeal.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(junctionIdeal.medium.sat.psat)) or junctionIdeal.port_3.h_outflow > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(junctionIdeal.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(junctionIdeal.medium.sat.psat))) or 99999.99999999999 * junctionIdeal.medium.p_bar > 2.2064e7 ($RES_EVT_516) (242) [ARRY] (1) pipe1.heatTransfer.Ts = {pipe1.heatTransfer.states.h} ($RES_BND_346) (243) [SCAL] (1) $SEV_17 = pipe3.flowModel.m_flows[1] > 0.0 ($RES_EVT_517) (244) [ARRY] (1) pipe1.heatTransfer.vs = pipe1.vs ($RES_BND_347) (245) [SCAL] (1) $SEV_18[1] = pipe3.mediums[1].p >= 0.0 ($RES_EVT_518) (246) [SCAL] (1) pipe3.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_300) (247) [SCAL] (1) pipe2.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_302) (248) [SCAL] (1) sink.ports[2].m_flow + valve2.port_b.m_flow = 0.0 ($RES_SIM_305) (249) [SCAL] (1) pipe2.H_flows[2] = -$FUN_8 ($RES_SIM_130) (250) [SCAL] (1) sink.ports[1].m_flow + valve1.port_b.m_flow = 0.0 ($RES_SIM_306) (251) [SCAL] (1) pipe2.H_flows[1] = $FUN_7 ($RES_SIM_131) (252) [SCAL] (1) pipe1.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_307) (253) [SCAL] (1) pipe2.mb_flows[1] = pipe2.m_flows[1] - pipe2.m_flows[2] ($RES_SIM_132) (254) [SCAL] (1) pipe2.Hb_flows[1] = pipe2.H_flows[1] - pipe2.H_flows[2] ($RES_SIM_133) (255) [ARRY] (2) pipe2.roughnessesFM[:] = {pipe2.roughnesses[1], pipe2.roughnesses[1]} ($RES_SIM_134) (256) [ARRY] (2) pipe2.dimensionsFM[:] = {pipe2.dimensions[1], pipe2.dimensions[1]} ($RES_SIM_135) (257) [ARRY] (2) pipe2.crossAreasFM[:] = {pipe2.crossAreas[1], pipe2.crossAreas[1]} ($RES_SIM_136) (258) [ARRY] (1) pipe2.dheightsFM[:] = {0.0} ($RES_SIM_137) (259) [ARRY] (1) pipe2.pathLengths[:] = {10.0} ($RES_SIM_138) (260) [ARRY] (1) pipe2.Wb_flows = (pipe2.crossAreas * pipe2.vs * (($FUN_6 + pipe2.port_b.p) - ((system.g * {0.0}) / pipe2.mediums.d + 99999.99999999999 * junctionIdeal.medium.p_bar))) / ({1.0} * {1.0}) .* {1.0} .* pipe2.nParallel ($RES_SIM_139) (261) [ARRY] (1) pipe3.flowModel.dps_fg = {(2.0 * (pipe3.flowModel.Fs_fg[1] / pipe3.flowModel.nParallel)) / (pipe3.flowModel.crossAreas[1] + pipe3.flowModel.crossAreas[2])} ($RES_SIM_90) (262) [ARRY] (1) pipe3.flowModel.Fs_p = pipe3.flowModel.nParallel * {0.5 * (pipe3.flowModel.crossAreas[1] + pipe3.flowModel.crossAreas[2]) * (pipe3.flowModel.states.phase - pipe3.flowModel.states.phase)} ($RES_SIM_91) (263) [SCAL] (1) pipe1.vsFM[3] = ((pipe1.m_flows[2] / pipe1.state_b.d) / pipe1.crossAreas[1]) / pipe1.nParallel ($RES_SIM_220) (264) [ARRY] (1) pipe3.flowModel.Ib_flows = {0.0} ($RES_SIM_92) (265) [ARRY] (1) pipe1.vsFM[2:2] = pipe1.vs ($RES_SIM_221) (266) [SCAL] (1) pipe3.flowModel.rhos_act[1] = noEvent(if $SEV_17 then pipe3.flowModel.rhos[1] else pipe3.flowModel.rhos[2]) ($RES_SIM_93) (267) [SCAL] (1) pipe1.vsFM[1] = ((pipe1.m_flows[1] / pipe1.state_a.d) / pipe1.crossAreas[1]) / pipe1.nParallel ($RES_SIM_222) (268) [SCAL] (1) pipe3.flowModel.mus_act[1] = noEvent(if $SEV_17 then pipe3.flowModel.mus[1] else pipe3.flowModel.mus[2]) ($RES_SIM_94) (269) [ARRY] (2) pipe1.m_flows[:] = pipe1.flowModel.m_flows[:] ($RES_SIM_223) (270) [ARRY] (1) pipe3.flowModel.m_flows = {homotopy(({$FUN_9} .* pipe3.flowModel.nParallel)[1], (pipe3.flowModel.m_flow_nominal / pipe3.flowModel.dp_nominal * (pipe3.flowModel.dps_fg - (pipe3.flowModel.g * pipe3.flowModel.dheights) .* pipe3.flowModel.rho_nominal))[1])} ($RES_SIM_95) (271) [RECD] (5) pipe1.statesFM[3] = pipe1.state_b ($RES_SIM_224) (272) [SCAL] (1) $SEV_20 = (pipe3.mediums[1].h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pipe3.mediums.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(pipe3.mediums.sat.psat)) or pipe3.mediums[1].h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pipe3.mediums.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(pipe3.mediums.sat.psat))) or pipe3.mediums[1].p > 2.2064e7 ($RES_EVT_520) (273) [ARRY] (5) pipe1.statesFM[2:2] = pipe1.mediums[:].state ($RES_SIM_225) (274) [SCAL] (1) $SEV_21 = pipe2.flowModel.m_flows[1] > 0.0 ($RES_EVT_521) (275) [RECD] (5) pipe1.statesFM[1] = pipe1.state_a ($RES_SIM_226) (276) [SCAL] (1) valve1.V_flow = -valve1.port_b.m_flow / smooth(1, if $SEV_55 then valve1.state_a.d else if $SEV_56 then valve1.state_b.d else if $SEV_54 then 0.5 * (valve1.state_a.d + valve1.state_b.d) - 0.25 * (valve1.state_b.d - valve1.state_a.d) * ((-3.0) + (valve1.port_b.m_flow / (-valve1.m_flow_small)) ^ 2.0) * (valve1.port_b.m_flow / valve1.m_flow_small) else 0.5 * (valve1.state_a.d + valve1.state_b.d)) ($RES_BND_351) (277) [SCAL] (1) $SEV_22[1] = pipe2.mediums[1].p >= 0.0 ($RES_EVT_522) (278) [SCAL] (1) valve1.port_a_T = smooth(1, if $SEV_55 then valve1.state_a.T else if $SEV_56 then Modelica.Media.Water.IF97_Utilities.T_ph(pipe2.port_b.p, valve1.port_a.h_outflow, 0, 0) else if $SEV_54 then 0.5 * (valve1.state_a.T + Modelica.Media.Water.IF97_Utilities.T_ph(pipe2.port_b.p, valve1.port_a.h_outflow, 0, 0)) - 0.25 * (Modelica.Media.Water.IF97_Utilities.T_ph(pipe2.port_b.p, valve1.port_a.h_outflow, 0, 0) - valve1.state_a.T) * ((-3.0) + (valve1.port_b.m_flow / (-valve1.m_flow_small)) ^ 2.0) * (valve1.port_b.m_flow / valve1.m_flow_small) else 0.5 * (valve1.state_a.T + Modelica.Media.Water.IF97_Utilities.T_ph(pipe2.port_b.p, valve1.port_a.h_outflow, 0, 0))) ($RES_BND_352) (279) [SCAL] (1) valve1.port_b_T = smooth(1, if $SEV_52 then valve1.state_b.T else if $SEV_53 then Modelica.Media.Water.IF97_Utilities.T_ph(valve1.port_b.p, valve1.port_b.h_outflow, 0, 0) else if $SEV_54 then 0.25 * (Modelica.Media.Water.IF97_Utilities.T_ph(valve1.port_b.p, valve1.port_b.h_outflow, 0, 0) - valve1.state_b.T) * ((-3.0) + (valve1.port_b.m_flow / valve1.m_flow_small) ^ 2.0) * (valve1.port_b.m_flow / valve1.m_flow_small) + 0.5 * (valve1.state_b.T + Modelica.Media.Water.IF97_Utilities.T_ph(valve1.port_b.p, valve1.port_b.h_outflow, 0, 0)) else 0.5 * (valve1.state_b.T + Modelica.Media.Water.IF97_Utilities.T_ph(valve1.port_b.p, valve1.port_b.h_outflow, 0, 0))) ($RES_BND_353) (280) [SCAL] (1) $SEV_24 = (pipe2.mediums[1].h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pipe2.mediums.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(pipe2.mediums.sat.psat)) or pipe2.mediums[1].h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pipe2.mediums.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(pipe2.mediums.sat.psat))) or pipe2.mediums[1].p > 2.2064e7 ($RES_EVT_524) (281) [SCAL] (1) pipe1.port_b.h_outflow = pipe1.mediums[1].h ($RES_SIM_229) (282) [SCAL] (1) valve1.dp_turbulent = max(valve1.dp_small, (6.283185307179586e6 * (Modelica.Media.Water.IF97_Utilities.dynamicViscosity(valve1.state_a.d, valve1.state_a.T, valve1.state_a.p, valve1.state_a.phase) + Modelica.Media.Water.IF97_Utilities.dynamicViscosity(valve1.state_b.d, valve1.state_b.T, valve1.state_b.p, valve1.state_b.phase)) ^ 2.0) / (valve1.Av * max(valve1.relativeFlowCoefficient, 0.001) * (valve1.state_b.d + valve1.state_a.d))) ($RES_BND_354) (283) [SCAL] (1) valve2.V_flow = -valve2.port_b.m_flow / smooth(1, if $SEV_50 then valve2.state_a.d else if $SEV_51 then valve2.state_b.d else if $SEV_49 then 0.5 * (valve2.state_a.d + valve2.state_b.d) - 0.25 * (valve2.state_b.d - valve2.state_a.d) * ((-3.0) + (valve2.port_b.m_flow / (-valve2.m_flow_small)) ^ 2.0) * (valve2.port_b.m_flow / valve2.m_flow_small) else 0.5 * (valve2.state_a.d + valve2.state_b.d)) ($RES_BND_355) (284) [SCAL] (1) valve2.port_a_T = smooth(1, if $SEV_50 then valve2.state_a.T else if $SEV_51 then Modelica.Media.Water.IF97_Utilities.T_ph(pipe3.port_b.p, valve2.port_a.h_outflow, 0, 0) else if $SEV_49 then 0.5 * (valve2.state_a.T + Modelica.Media.Water.IF97_Utilities.T_ph(pipe3.port_b.p, valve2.port_a.h_outflow, 0, 0)) - 0.25 * (Modelica.Media.Water.IF97_Utilities.T_ph(pipe3.port_b.p, valve2.port_a.h_outflow, 0, 0) - valve2.state_a.T) * ((-3.0) + (valve2.port_b.m_flow / (-valve2.m_flow_small)) ^ 2.0) * (valve2.port_b.m_flow / valve2.m_flow_small) else 0.5 * (valve2.state_a.T + Modelica.Media.Water.IF97_Utilities.T_ph(pipe3.port_b.p, valve2.port_a.h_outflow, 0, 0))) ($RES_BND_356) (285) [SCAL] (1) $SEV_27 = (sink.medium.h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(sink.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(sink.medium.sat.psat)) or sink.medium.h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(sink.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(sink.medium.sat.psat))) or sink.p > 2.2064e7 ($RES_EVT_527) (286) [SCAL] (1) valve2.port_b_T = smooth(1, if $SEV_47 then valve2.state_b.T else if $SEV_48 then Modelica.Media.Water.IF97_Utilities.T_ph(valve2.port_b.p, valve2.port_b.h_outflow, 0, 0) else if $SEV_49 then 0.25 * (Modelica.Media.Water.IF97_Utilities.T_ph(valve2.port_b.p, valve2.port_b.h_outflow, 0, 0) - valve2.state_b.T) * ((-3.0) + (valve2.port_b.m_flow / valve2.m_flow_small) ^ 2.0) * (valve2.port_b.m_flow / valve2.m_flow_small) + 0.5 * (valve2.state_b.T + Modelica.Media.Water.IF97_Utilities.T_ph(valve2.port_b.p, valve2.port_b.h_outflow, 0, 0)) else 0.5 * (valve2.state_b.T + Modelica.Media.Water.IF97_Utilities.T_ph(valve2.port_b.p, valve2.port_b.h_outflow, 0, 0))) ($RES_BND_357) (287) [SCAL] (1) $SEV_28 = valve2.dp >= valve2.dp_turbulent ($RES_EVT_528) (288) [SCAL] (1) valve2.dp_turbulent = max(valve2.dp_small, (6.283185307179586e6 * (Modelica.Media.Water.IF97_Utilities.dynamicViscosity(valve2.state_a.d, valve2.state_a.T, valve2.state_a.p, valve2.state_a.phase) + Modelica.Media.Water.IF97_Utilities.dynamicViscosity(valve2.state_b.d, valve2.state_b.T, valve2.state_b.p, valve2.state_b.phase)) ^ 2.0) / (valve2.Av * max(valve2.relativeFlowCoefficient, 0.001) * (valve2.state_b.d + valve2.state_a.d))) ($RES_BND_358) (289) [SCAL] (1) $SEV_29 = valve2.state_a.d > 0.0 ($RES_EVT_529) (290) [ARRY] (1) pipe2.Qb_flows = pipe2.heatTransfer.Q_flows ($RES_SIM_140) (291) [SCAL] (1) valve1.port_b.p = sink.ports[1].p ($RES_SIM_316) (292) [ARRY] (1) pipe2.heatTransfer.Q_flows = pipe2.heatTransfer.heatPorts.Q_flow ($RES_SIM_141) (293) [SCAL] (1) valve2.port_b.p = sink.ports[2].p ($RES_SIM_317) (294) [ARRY] (1) pipe2.heatTransfer.Ts = pipe2.heatTransfer.heatPorts.T ($RES_SIM_142) (295) [SCAL] (1) pipe1.port_a.m_flow + source.ports[1].m_flow = 0.0 ($RES_SIM_318) (296) [ARRY] (1) {0.0} = pipe2.flowModel.Ib_flows - (pipe2.flowModel.Fs_fg + pipe2.flowModel.Fs_p) ($RES_SIM_143) (297) [SCAL] (1) source.ports[1].p = pipe1.port_a.p ($RES_SIM_319) (298) [ARRY] (1) pipe2.flowModel.Is = {pipe2.flowModel.m_flows[1] * pipe2.flowModel.pathLengths[1]} ($RES_SIM_144) (299) [ARRY] (1) pipe2.flowModel.dps_fg = {(2.0 * (pipe2.flowModel.Fs_fg[1] / pipe2.flowModel.nParallel)) / (pipe2.flowModel.crossAreas[1] + pipe2.flowModel.crossAreas[2])} ($RES_SIM_145) (300) [ARRY] (1) pipe2.flowModel.Fs_p = pipe2.flowModel.nParallel * {0.5 * (pipe2.flowModel.crossAreas[1] + pipe2.flowModel.crossAreas[2]) * (pipe2.flowModel.states.phase - pipe2.flowModel.states.phase)} ($RES_SIM_146) (301) [ARRY] (1) pipe2.flowModel.Ib_flows = {0.0} ($RES_SIM_147) (302) [SCAL] (1) pipe2.flowModel.rhos_act[1] = noEvent(if $SEV_21 then pipe2.flowModel.rhos[1] else pipe2.flowModel.rhos[2]) ($RES_SIM_148) (303) [SCAL] (1) pipe2.flowModel.mus_act[1] = noEvent(if $SEV_21 then pipe2.flowModel.mus[1] else pipe2.flowModel.mus[2]) ($RES_SIM_149) (304) [SCAL] (1) pipe1.port_a.h_outflow = pipe1.mediums[1].h ($RES_SIM_230) (305) [SCAL] (1) pipe1.port_b.m_flow = -pipe1.m_flows[2] ($RES_SIM_231) (306) [SCAL] (1) pipe1.port_a.m_flow = pipe1.m_flows[1] ($RES_SIM_232) (307) [SCAL] (1) pipe1.H_flows[2] = -$FUN_4 ($RES_SIM_233) (308) [SCAL] (1) pipe1.H_flows[1] = $FUN_3 ($RES_SIM_234) (309) [SCAL] (1) $SEV_30 = valve2.dp <= (-valve2.dp_turbulent) ($RES_EVT_530) (310) [SCAL] (1) pipe1.mb_flows[1] = pipe1.m_flows[1] - pipe1.m_flows[2] ($RES_SIM_235) (311) [SCAL] (1) $SEV_31 = valve2.state_b.d > 0.0 ($RES_EVT_531) (312) [SCAL] (1) pipe1.Hb_flows[1] = pipe1.H_flows[1] - pipe1.H_flows[2] ($RES_SIM_236) (313) [ARRY] (1) pipe2.fluidVolumes = {10.0 * pipe2.crossAreas[1]} .* pipe2.nParallel ($RES_BND_361) (314) [SCAL] (1) $SEV_32 = valve2.state_a.d >= valve2.state_b.d ($RES_EVT_532) (315) [ARRY] (3) pipe1.roughnessesFM[:] = {pipe1.roughnesses[1], pipe1.roughnesses[1], pipe1.roughnesses[1]} ($RES_SIM_237) (316) [ARRY] (1) pipe2.mediums.p_bar = {1e-5 * pipe2.mediums[1].p} ($RES_BND_362) (317) [SCAL] (1) $SEV_33 = valve2.relativeFlowCoefficient < valve2.minLimiter.uMin ($RES_EVT_533) (318) [ARRY] (3) pipe1.dimensionsFM[:] = {pipe1.dimensions[1], pipe1.dimensions[1], pipe1.dimensions[1]} ($RES_SIM_238) (319) [ARRY] (1) pipe2.mediums.T_degC = {(-273.15) + pipe2.mediums[1].T} ($RES_BND_363) (320) [SCAL] (1) $SEV_34 = valve1.dp >= valve1.dp_turbulent ($RES_EVT_534) (321) [ARRY] (3) pipe1.crossAreasFM[:] = {pipe1.crossAreas[1], pipe1.crossAreas[1], pipe1.crossAreas[1]} ($RES_SIM_239) (322) [ARRY] (2) pipe2.flowModel.vs = pipe2.vsFM ($RES_BND_364) (323) [SCAL] (1) $SEV_35 = valve1.state_a.d > 0.0 ($RES_EVT_535) (324) [ARRY] (2) pipe2.flowModel.crossAreas = pipe2.crossAreasFM ($RES_BND_365) (325) [SCAL] (1) $SEV_36 = valve1.dp <= (-valve1.dp_turbulent) ($RES_EVT_536) (326) [ARRY] (2) pipe2.flowModel.dimensions = pipe2.dimensionsFM ($RES_BND_366) (327) [SCAL] (1) $SEV_37 = valve1.state_b.d > 0.0 ($RES_EVT_537) (328) [ARRY] (2) pipe2.flowModel.roughnesses = pipe2.roughnessesFM ($RES_BND_367) (329) [SCAL] (1) $SEV_38 = valve1.state_a.d >= valve1.state_b.d ($RES_EVT_538) (330) [ARRY] (1) pipe2.flowModel.dheights = pipe2.dheightsFM ($RES_BND_368) (331) [SCAL] (1) $SEV_39 = valve1.relativeFlowCoefficient < valve1.minLimiter.uMin ($RES_EVT_539) (332) [ARRY] (1) pipe2.flowModel.pathLengths = pipe2.pathLengths ($RES_BND_369) (333) [ARRY] (1) pipe2.flowModel.m_flows = {homotopy(({$FUN_5} .* pipe2.flowModel.nParallel)[1], (pipe2.flowModel.m_flow_nominal / pipe2.flowModel.dp_nominal * (pipe2.flowModel.dps_fg - (pipe2.flowModel.g * pipe2.flowModel.dheights) .* pipe2.flowModel.rho_nominal))[1])} ($RES_SIM_150) (334) [ARRY] (1) pipe2.mediums.phase = pipe2.mediums.state.phase ($RES_SIM_156) (335) [ARRY] (1) pipe2.mediums.d = pipe2.mediums.state.d ($RES_SIM_157) (336) [ARRY] (1) pipe2.mediums.T = pipe2.mediums.state.T ($RES_SIM_158) (337) [ARRY] (1) pipe2.mediums.p = pipe2.mediums.state.p ($RES_SIM_159) (338) [ARRY] (2) pipe1.dheightsFM[:] = {0.0, 0.0} ($RES_SIM_240) (339) [ARRY] (2) pipe1.pathLengths[:] = {5.0, 5.0} ($RES_SIM_241) (340) [ARRY] (1) pipe1.Wb_flows = (pipe1.crossAreas * pipe1.vs * (($FUN_2 + 99999.99999999999 * junctionIdeal.medium.p_bar) - ((system.g * {0.0}) / pipe1.mediums.d + pipe1.port_a.p))) / ({1.0} * {1.0}) .* {1.0} .* pipe1.nParallel ($RES_SIM_242) (341) [ARRY] (1) pipe1.Qb_flows = pipe1.heatTransfer.Q_flows ($RES_SIM_243) (342) [ARRY] (1) pipe1.heatTransfer.Q_flows = pipe1.heatTransfer.heatPorts.Q_flow ($RES_SIM_244) (343) [FOR-] (2) ($RES_EVT_540) (343) [----] for $i1 in 1:2 loop (343) [----] [SCAL] (1) $SEV_40[$i1] = pipe1.flowModel.m_flows[$i1] > 0.0 ($RES_EVT_541) (343) [----] end for; (344) [ARRY] (1) pipe1.heatTransfer.Ts = pipe1.heatTransfer.heatPorts.T ($RES_SIM_245) (345) [FOR-] (2) ($RES_BND_370) (345) [----] for $i1 in 1:2 loop (345) [----] [SCAL] (1) pipe2.flowModel.rhos[$i1] = pipe2.flowModel.states.d ($RES_BND_371) (345) [----] end for; (346) [ARRY] (2) {0.0 for $i1 in 1:2} = pipe1.flowModel.Ib_flows - (pipe1.flowModel.Fs_fg + pipe1.flowModel.Fs_p) ($RES_SIM_246) (347) [SCAL] (1) $SEV_41[1] = pipe1.mediums[1].p >= 0.0 ($RES_EVT_542) (348) [ARRY] (2) pipe1.flowModel.Is = {pipe1.flowModel.m_flows[i] * pipe1.flowModel.pathLengths[i] for i in 1:2} ($RES_SIM_247) (349) [FOR-] (2) ($RES_BND_372) (349) [----] for $i1 in 1:2 loop (349) [----] [SCAL] (1) pipe2.flowModel.mus[$i1] = pipe2.flowModel.mu_nominal ($RES_BND_373) (349) [----] end for; (350) [ARRY] (2) pipe1.flowModel.dps_fg = {pipe1.flowModel.Fs_fg[i] / pipe1.flowModel.nParallel * 2.0 / (pipe1.flowModel.crossAreas[i] + pipe1.flowModel.crossAreas[i + 1]) for i in 1:2} ($RES_SIM_248) (351) [SCAL] (1) $SEV_43 = (pipe1.mediums[1].h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pipe1.mediums.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(pipe1.mediums.sat.psat)) or pipe1.mediums[1].h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(pipe1.mediums.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(pipe1.mediums.sat.psat))) or pipe1.mediums[1].p > 2.2064e7 ($RES_EVT_544) (352) [ARRY] (2) pipe1.flowModel.Fs_p = pipe1.flowModel.nParallel * {0.0 for i in 1:2} ($RES_SIM_249) (353) [ARRY] (1) pipe2.flowModel.pathLengths_internal = pipe2.flowModel.pathLengths ($RES_BND_374) (354) [SCAL] (1) pipe2.flowModel.Res_turbulent_internal[1] = pipe2.flowModel.Re_turbulent ($RES_BND_375) (355) [ARRY] (1) pipe2.flowModel.diameters = 0.5 * (pipe2.flowModel.dimensions[2:2] + pipe2.flowModel.dimensions[1:1]) ($RES_BND_376) (356) [SCAL] (1) $SEV_46 = (source.medium.h < Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(source.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.boilingcurve_p(source.medium.sat.psat)) or source.medium.h > Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.hvl_p(source.medium.sat.psat, Modelica.Media.Water.IF97_Utilities.BaseIF97.Regions.dewcurve_p(source.medium.sat.psat))) or source.p > 2.2064e7 ($RES_EVT_547) (357) [SCAL] (1) $SEV_47 = valve2.port_b.m_flow > valve2.m_flow_small ($RES_EVT_548) (358) [ARRY] (1) pipe2.vs = {(0.5 * (pipe2.m_flows[2] + pipe2.m_flows[1])) / (pipe2.crossAreas[1] * pipe2.mediums[1].d)} / pipe2.nParallel ($RES_BND_378) (359) [SCAL] (1) $SEV_48 = valve2.port_b.m_flow < (-valve2.m_flow_small) ($RES_EVT_549) (360) [ARRY] (1) pipe2.mediums.h = pipe2.mediums.state.h ($RES_SIM_160) (361) [SCAL] (1) pipe2.mediums[1].u = pipe2.mediums[1].h - pipe2.mediums[1].p / pipe2.mediums[1].d ($RES_SIM_162) (362) [ARRY] (1) pipe2.mediums.sat.psat = pipe2.mediums.p ($RES_SIM_163) (363) [SCAL] (1) pipe2.mediums[1].sat.Tsat = Modelica.Media.Water.IF97_Utilities.BaseIF97.Basic.tsat(pipe2.mediums[1].p) ($RES_SIM_164) (364) [SCAL] (1) pipe2.mediums[1].T = Modelica.Media.Water.IF97_Utilities.T_props_ph(pipe2.mediums[1].p, pipe2.mediums[1].h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(pipe2.mediums[1].p, pipe2.mediums[1].h, pipe2.mediums[1].phase, 0)) ($RES_SIM_165) (365) [SCAL] (1) pipe2.mediums[1].d = Modelica.Media.Water.IF97_Utilities.rho_props_ph(pipe2.mediums[1].p, pipe2.mediums[1].h, Modelica.Media.Water.IF97_Utilities.waterBaseProp_ph(pipe2.mediums[1].p, pipe2.mediums[1].h, pipe2.mediums[1].phase, 0)) ($RES_SIM_166) (366) [SCAL] (1) pipe2.mediums[1].phase = if $SEV_24 then 1 else 2 ($RES_SIM_167) (367) [FOR-] (2) ($RES_SIM_169) (367) [----] for $i1 in 1:2 loop (367) [----] [SCAL] (1) sink.ports[$i1].p = sink.p ($RES_SIM_170) (367) [----] end for; (368) [SCAL] (1) $FUN_1 = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe1.flowModel.WallFriction.massFlowRate_dp_staticHead(pipe1.flowModel.dps_fg[$i1], pipe1.flowModel.rhos[(1:2)[$i1]], pipe1.flowModel.rhos[(2:3)[$i1]], pipe1.flowModel.mus[(1:2)[$i1]], pipe1.flowModel.mus[(2:3)[$i1]], pipe1.flowModel.pathLengths_internal[$i1], pipe1.flowModel.diameters[$i1], (pipe1.flowModel.g * pipe1.flowModel.dheights)[$i1], ((pipe1.flowModel.crossAreas[1:2] + pipe1.flowModel.crossAreas[2:3]) / 2.0)[$i1], ((pipe1.flowModel.roughnesses[1:2] + pipe1.flowModel.roughnesses[2:3]) / 2.0)[$i1], pipe1.flowModel.dp_small / 2.0, pipe1.flowModel.Res_turbulent_internal[$i1]) ($RES_$AUX_437) (369) [SCAL] (1) $FUN_2 = sum(pipe1.flowModel.dps_fg) ($RES_$AUX_436) (370) [ARRY] (2) pipe1.flowModel.Ib_flows = {0.0 for $i1 in 1:2} ($RES_SIM_250) (371) [SCAL] (1) $FUN_3 = semiLinear(pipe1.port_a.m_flow, source.ports[1].h_outflow, pipe1.mediums[1].h) ($RES_$AUX_435) (372) [FOR-] (2) ($RES_SIM_251) (372) [----] for $i1 in 1:2 loop (372) [----] [SCAL] (1) pipe1.flowModel.rhos_act[$i1] = noEvent(if $SEV_40[$i1] then pipe1.flowModel.rhos[$i1] else pipe1.flowModel.rhos[$i1 + 1]) ($RES_SIM_252) (372) [----] end for; (373) [SCAL] (1) $FUN_4 = semiLinear(pipe1.port_b.m_flow, junctionIdeal.port_3.h_outflow, pipe1.mediums[1].h) ($RES_$AUX_434) (374) [SCAL] (1) $FUN_5 = ModelicaTest.Fluid.TestPipesAndValves.BranchingPipes14.pipe2.flowModel.WallFriction.massFlowRate_dp_staticHead(pipe2.flowModel.dps_fg[1], pipe2.flowModel.rhos[1], pipe2.flowModel.rhos[2], pipe2.flowModel.mus[1], pipe2.flowModel.mus[2], pipe2.flowModel.pathLengths_internal[1], pipe2.flowModel.diameters[1], (pipe2.flowModel.g * pipe2.flowModel.dheights)[1], (0.5 .* (pipe2.flowModel.crossAreas[1:1] + pipe2.flowModel.crossAreas[2:2]))[1], (0.5 .* (pipe2.flowModel.roughnesses[1:1] + pipe2.flowModel.roughnesses[2:2]))[1], pipe2.flowModel.dp_small, pipe2.flowModel.Res_turbulent_internal[1]) ($RES_$AUX_433) (375) [FOR-] (2) ($RES_SIM_253) (375) [----] for $i1 in 1:2 loop (375) [----] [SCAL] (1) pipe1.flowModel.mus_act[$i1] = noEvent(if $SEV_40[$i1] then pipe1.flowModel.mus[$i1] else pipe1.flowModel.mus[$i1 + 1]) ($RES_SIM_254) (375) [----] end for; (376) [SCAL] (1) $FUN_6 = sum(pipe2.flowModel.dps_fg) ($RES_$AUX_432)