Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.2_ModelicaTest.Fluid.Dissipation.Verifications.HeatTransfer.StraightPipe.kc_laminar.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Fluid.Dissipation.Verifications.HeatTransfer.StraightPipe.kc_laminar,tolerance=1e-07,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Fluid.Dissipation.Verifications.HeatTransfer.StraightPipe.kc_laminar") translateModel(ModelicaTest.Fluid.Dissipation.Verifications.HeatTransfer.StraightPipe.kc_laminar,tolerance=1e-07,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.2_ModelicaTest.Fluid.Dissipation.Verifications.HeatTransfer.StraightPipe.kc_laminar") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001195/0.001195, allocations: 109.4 kB / 16.42 MB, free: 6.418 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.00111/0.00111, allocations: 191.3 kB / 17.36 MB, free: 5.684 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.275/1.275, allocations: 205.1 MB / 223.2 MB, free: 12.2 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.2+maint.om/package.mo): time 0.1799/0.1799, allocations: 39.96 MB / 310.5 MB, free: 4.008 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 1.704e-05/1.705e-05, allocations: 9.734 kB / 436.4 MB, free: 11.87 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Fluid.Dissipation.Verifications.HeatTransfer.StraightPipe.kc_laminar): time 0.002199/0.002224, allocations: 2.206 MB / 438.6 MB, free: 9.648 MB / 318.1 MB Notification: Performance of NFInst.instExpressions: time 0.001222/0.003458, allocations: 1.154 MB / 439.8 MB, free: 8.488 MB / 318.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 6.878e-05/0.003537, allocations: 0 / 439.8 MB, free: 8.488 MB / 318.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0002387/0.003784, allocations: 71.53 kB / 439.9 MB, free: 8.418 MB / 318.1 MB Notification: Performance of NFTyping.typeBindings: time 0.0001751/0.003968, allocations: 103.3 kB / 440 MB, free: 8.316 MB / 318.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.0003681/0.004355, allocations: 171.4 kB / 440.1 MB, free: 8.148 MB / 318.1 MB Notification: Performance of NFFlatten.flatten: time 0.0002844/0.004649, allocations: 374.7 kB / 440.5 MB, free: 7.781 MB / 318.1 MB Notification: Performance of NFFlatten.resolveConnections: time 3.917e-05/0.004696, allocations: 17.09 kB / 440.5 MB, free: 7.766 MB / 318.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.0001464/0.004847, allocations: 171.5 kB / 440.7 MB, free: 7.598 MB / 318.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0001526/0.005008, allocations: 179.4 kB / 440.9 MB, free: 7.422 MB / 318.1 MB Notification: Performance of NFPackage.collectConstants: time 1.966e-05/0.005034, allocations: 8 kB / 440.9 MB, free: 7.414 MB / 318.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.0003376/0.005376, allocations: 323.5 kB / 441.2 MB, free: 7.098 MB / 318.1 MB Notification: Performance of combineBinaries: time 0.0002442/0.005629, allocations: 459.7 kB / 441.6 MB, free: 6.645 MB / 318.1 MB Notification: Performance of replaceArrayConstructors: time 0.0001285/0.005764, allocations: 316.4 kB / 441.9 MB, free: 6.332 MB / 318.1 MB Notification: Performance of NFVerifyModel.verify: time 3.636e-05/0.005805, allocations: 19.94 kB / 442 MB, free: 6.312 MB / 318.1 MB Notification: Performance of FrontEnd: time 1.502e-05/0.005826, allocations: 4 kB / 442 MB, free: 6.309 MB / 318.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 167 (43) * Number of variables: 314 (44) Notification: Performance of Bindings: time 0.001199/0.00703, allocations: 2.004 MB / 444 MB, free: 4.191 MB / 318.1 MB Notification: Performance of FunctionAlias: time 0.0002046/0.007241, allocations: 231.2 kB / 444.2 MB, free: 3.977 MB / 318.1 MB Notification: Performance of Early Inline: time 0.0005502/0.007799, allocations: 0.9007 MB / 445.1 MB, free: 3.047 MB / 318.1 MB Notification: Performance of simplify1: time 2.583e-05/0.007832, allocations: 27.97 kB / 445.1 MB, free: 3.02 MB / 318.1 MB Notification: Performance of Alias: time 0.0001925/0.00803, allocations: 230 kB / 445.3 MB, free: 2.754 MB / 318.1 MB Notification: Performance of simplify2: time 1.546e-05/0.008051, allocations: 19.97 kB / 445.4 MB, free: 2.734 MB / 318.1 MB Notification: Performance of Events: time 0.0001207/0.008176, allocations: 119.7 kB / 445.5 MB, free: 2.617 MB / 318.1 MB Notification: Performance of Detect States: time 0.0001652/0.008347, allocations: 234.4 kB / 445.7 MB, free: 2.375 MB / 318.1 MB Notification: Performance of Partitioning: time 0.0002854/0.008639, allocations: 350.1 kB / 446.1 MB, free: 2.004 MB / 318.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency input_mflow_0.y could not be divided by the body size 3 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (3) m_flow = {(input_mflow_0.y * eta[1]) / eta[3], (input_mflow_0.y * eta[2]) / eta[3], input_mflow_0.y} ($RES_BND_12) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (62/370) *************************** (1) [ALGB] (9) Real[3, 3] m_flow_IN_var_1.lambda = {lambda[$m_flow_IN_var_11] for $m_flow_IN_var_11 in 1:3} (2) [ALGB] (9) Real[3, 3] m_flow_IN_con_3.L = {L for $m_flow_IN_con_31 in 1:3} (3) [ALGB] (9) Real[3, 3] m_flow_IN_var_3.eta = {eta[$m_flow_IN_var_31] for $m_flow_IN_var_31 in 1:3} (min = {0.0 for $i1 in 1:3}) (4) [DISC] (9) enumeration Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary(UWTuDFF, UHFuDFF, UWTuUFF, UHFuUFF)[3, 3] m_flow_IN_con_3.target = {Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UWTuUFF for $i1 in 1:3} (5) [ALGB] (9) Real[3, 3] m_flow_IN_var_3.cp = {cp[$m_flow_IN_var_31] for $m_flow_IN_var_31 in 1:3} (6) [ALGB] (9) Real[3, 3] m_flow_IN_var_1.m_flow = {m_flow[$m_flow_IN_var_11] for $m_flow_IN_var_11 in 1:3} (7) [ALGB] (9) Real[3, 3] m_flow_IN_con_2.L = {L for $m_flow_IN_con_21 in 1:3} (8) [ALGB] (9) Real[3, 3] m_flow_IN_var_4.rho = {rho[$m_flow_IN_var_41] for $m_flow_IN_var_41 in 1:3} (min = {0.0 for $i1 in 1:3}) (9) [ALGB] (3) Real[3] $FUN_19 (10) [ALGB] (9) Real[3, 3] m_flow_IN_var_4.cp = {cp[$m_flow_IN_var_41] for $m_flow_IN_var_41 in 1:3} (11) [ALGB] (9) Real[3, 3] m_flow_IN_var_1.rho = {rho[$m_flow_IN_var_11] for $m_flow_IN_var_11 in 1:3} (min = {0.0 for $i1 in 1:3}) (12) [ALGB] (3) Real[3] $FUN_18 (13) [ALGB] (3) Real[3] $FUN_17 (14) [ALGB] (9) Real[3, 3] m_flow_IN_var_3.lambda = {lambda[$m_flow_IN_var_31] for $m_flow_IN_var_31 in 1:3} (15) [ALGB] (3) Real[3] $FUN_16 (16) [ALGB] (3) Real[3] $FUN_15 (17) [ALGB] (3) Real[3] $FUN_14 (18) [ALGB] (3) Real[3] $FUN_13 (19) [ALGB] (9) Real[3, 3] m_flow_IN_con_1.L = {L for $m_flow_IN_con_11 in 1:3} (20) [ALGB] (3) Real[3] $FUN_12 (21) [ALGB] (9) Real[3, 3] m_flow_IN_var_3.m_flow = {m_flow[$m_flow_IN_var_31] for $m_flow_IN_var_31 in 1:3} (22) [ALGB] (3) Real[3] $FUN_11 (23) [ALGB] (3) Real[3] $FUN_10 (24) [ALGB] (9) Real[3, 3] m_flow_IN_var_4.eta = {eta[$m_flow_IN_var_41] for $m_flow_IN_var_41 in 1:3} (min = {0.0 for $i1 in 1:3}) (25) [ALGB] (9) Real[3, 3] m_flow_IN_var_1.eta = {eta[$m_flow_IN_var_11] for $m_flow_IN_var_11 in 1:3} (min = {0.0 for $i1 in 1:3}) (26) [ALGB] (3) Real[3] m_flow = {(input_mflow_0.y * eta[1]) / eta[3], (input_mflow_0.y * eta[2]) / eta[3], input_mflow_0.y} (27) [DISC] (9) enumeration Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary(UWTuDFF, UHFuDFF, UWTuUFF, UHFuUFF)[3, 3] m_flow_IN_con_2.target = {Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UHFuDFF for $i1 in 1:3} (28) [ALGB] (3) Real[3] Nu_4 (29) [ALGB] (3) Real[3] Nu_3 (30) [ALGB] (3) Real[3] Nu_2 (31) [ALGB] (9) Real[3, 3] m_flow_IN_var_2.rho = {rho[$m_flow_IN_var_21] for $m_flow_IN_var_21 in 1:3} (min = {0.0 for $i1 in 1:3}) (32) [ALGB] (3) Real[3] Nu_1 (33) [ALGB] (9) Real[3, 3] m_flow_IN_var_2.lambda = {lambda[$m_flow_IN_var_21] for $m_flow_IN_var_21 in 1:3} (34) [ALGB] (9) Real[3, 3] m_flow_IN_con_1.d_hyd = {d_hyd for $m_flow_IN_con_11 in 1:3} (min = {0.0 for $i1 in 1:3}) (35) [ALGB] (3) Real[3] Re_1 (36) [DISC] (9) enumeration Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary(UWTuDFF, UHFuDFF, UWTuUFF, UHFuUFF)[3, 3] m_flow_IN_con_4.target = {Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UHFuUFF for $i1 in 1:3} (37) [DISC] (1) Boolean $TEV_4 (38) [ALGB] (9) Real[3, 3] m_flow_IN_con_2.d_hyd = {d_hyd for $m_flow_IN_con_21 in 1:3} (min = {0.0 for $i1 in 1:3}) (39) [DISC] (1) Boolean $TEV_3 (40) [ALGB] (9) Real[3, 3] m_flow_IN_var_2.m_flow = {m_flow[$m_flow_IN_var_21] for $m_flow_IN_var_21 in 1:3} (41) [ALGB] (9) Real[3, 3] m_flow_IN_var_2.eta = {eta[$m_flow_IN_var_21] for $m_flow_IN_var_21 in 1:3} (min = {0.0 for $i1 in 1:3}) (42) [ALGB] (9) Real[3, 3] m_flow_IN_con_3.d_hyd = {d_hyd for $m_flow_IN_con_31 in 1:3} (min = {0.0 for $i1 in 1:3}) (43) [ALGB] (3) Real[3] $FUN_24 (44) [ALGB] (3) Real[3] $FUN_23 (45) [ALGB] (3) Real[3] $FUN_22 (46) [ALGB] (9) Real[3, 3] m_flow_IN_con_4.d_hyd = {d_hyd for $m_flow_IN_con_41 in 1:3} (min = {0.0 for $i1 in 1:3}) (47) [ALGB] (3) Real[3] $FUN_21 (48) [DISC] (9) enumeration Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary(UWTuDFF, UHFuDFF, UWTuUFF, UHFuUFF)[3, 3] m_flow_IN_con_1.target = {Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UWTuDFF for $i1 in 1:3} (49) [ALGB] (3) Real[3] $FUN_20 (50) [ALGB] (9) Real[3, 3] m_flow_IN_var_1.cp = {cp[$m_flow_IN_var_11] for $m_flow_IN_var_11 in 1:3} (51) [ALGB] (9) Real[3, 3] m_flow_IN_con_4.L = {L for $m_flow_IN_con_41 in 1:3} (52) [ALGB] (9) Real[3, 3] m_flow_IN_var_3.rho = {rho[$m_flow_IN_var_31] for $m_flow_IN_var_31 in 1:3} (min = {0.0 for $i1 in 1:3}) (53) [ALGB] (9) Real[3, 3] m_flow_IN_var_4.lambda = {lambda[$m_flow_IN_var_41] for $m_flow_IN_var_41 in 1:3} (54) [ALGB] (1) protected Real Re = Re_1[1] (55) [ALGB] (1) Real input_mflow_0.y (56) [ALGB] (3) Real[3] $FUN_9 (57) [ALGB] (3) Real[3] $FUN_8 (58) [ALGB] (3) Real[3] $FUN_7 (59) [ALGB] (9) Real[3, 3] m_flow_IN_var_2.cp = {cp[$m_flow_IN_var_21] for $m_flow_IN_var_21 in 1:3} (60) [ALGB] (9) Real[3, 3] m_flow_IN_var_4.m_flow = {m_flow[$m_flow_IN_var_41] for $m_flow_IN_var_41 in 1:3} (61) [ALGB] (3) Real[3] $FUN_6 (62) [ALGB] (3) Real[3] $FUN_5 System Equations (46/178) *************************** (1) [SCAL] (1) input_mflow_0.y = input_mflow_0.offset + (if $TEV_3 then 0.0 else if $TEV_4 then (input_mflow_0.height * (time - input_mflow_0.startTime)) / input_mflow_0.duration else input_mflow_0.height) ($RES_SIM_11) (2) [FOR-] (3) ($RES_BND_21) (2) [----] for $i1 in 1:3 loop (2) [----] [SCAL] (1) m_flow_IN_var_1[$i1].eta = eta[$i1] ($RES_BND_22) (2) [----] end for; (3) [FOR-] (3) ($RES_BND_23) (3) [----] for $i1 in 1:3 loop (3) [----] [SCAL] (1) m_flow_IN_var_1[$i1].lambda = lambda[$i1] ($RES_BND_24) (3) [----] end for; (4) [FOR-] (3) ($RES_BND_25) (4) [----] for $i1 in 1:3 loop (4) [----] [SCAL] (1) m_flow_IN_var_1[$i1].rho = rho[$i1] ($RES_BND_26) (4) [----] end for; (5) [FOR-] (3) ($RES_BND_41) (5) [----] for $i1 in 1:3 loop (5) [----] [SCAL] (1) m_flow_IN_var_2[$i1].rho = rho[$i1] ($RES_BND_42) (5) [----] end for; (6) [FOR-] (3) ($RES_$AUX_92) (6) [----] for $i1 in 1:3 loop (6) [----] [SCAL] (1) Re_1[$i1] = $FUN_7[$i1] ($RES_$AUX_93) (6) [----] end for; (7) [FOR-] (3) ($RES_BND_27) (7) [----] for $i1 in 1:3 loop (7) [----] [SCAL] (1) m_flow_IN_var_1[$i1].m_flow = m_flow[$i1] ($RES_BND_28) (7) [----] end for; (8) [FOR-] (3) ($RES_BND_43) (8) [----] for $i1 in 1:3 loop (8) [----] [SCAL] (1) m_flow_IN_var_2[$i1].m_flow = m_flow[$i1] ($RES_BND_44) (8) [----] end for; (9) [FOR-] (3) ($RES_$AUX_94) (9) [----] for $i1 in 1:3 loop (9) [----] [SCAL] (1) Nu_1[$i1] = $FUN_8[$i1] ($RES_$AUX_95) (9) [----] end for; (10) [FOR-] (3) ($RES_BND_29) (10) [----] for $i1 in 1:3 loop (10) [----] [SCAL] (1) m_flow_IN_con_2[$i1].d_hyd = d_hyd ($RES_BND_30) (10) [----] end for; (11) [FOR-] (3) ($RES_BND_45) (11) [----] for $i1 in 1:3 loop (11) [----] [SCAL] (1) m_flow_IN_con_3[$i1].d_hyd = d_hyd ($RES_BND_46) (11) [----] end for; (12) [FOR-] (3) ($RES_$AUX_96) (12) [----] for $i1 in 1:3 loop (12) [----] [SCAL] (1) Nu_2[$i1] = $FUN_13[$i1] ($RES_$AUX_97) (12) [----] end for; (13) [FOR-] (3) ($RES_BND_61) (13) [----] for $i1 in 1:3 loop (13) [----] [SCAL] (1) m_flow_IN_con_4[$i1].d_hyd = d_hyd ($RES_BND_62) (13) [----] end for; (14) [FOR-] (3) ($RES_BND_47) (14) [----] for $i1 in 1:3 loop (14) [----] [SCAL] (1) m_flow_IN_con_3[$i1].L = L ($RES_BND_48) (14) [----] end for; (15) [FOR-] (3) ($RES_$AUX_98) (15) [----] for $i1 in 1:3 loop (15) [----] [SCAL] (1) Nu_3[$i1] = $FUN_18[$i1] ($RES_$AUX_99) (15) [----] end for; (16) [FOR-] (3) ($RES_BND_63) (16) [----] for $i1 in 1:3 loop (16) [----] [SCAL] (1) m_flow_IN_con_4[$i1].L = L ($RES_BND_64) (16) [----] end for; (17) [FOR-] (3) ($RES_BND_49) (17) [----] for $i1 in 1:3 loop (17) [----] [SCAL] (1) m_flow_IN_con_3[$i1].target = Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UWTuUFF ($RES_BND_50) (17) [----] end for; (18) [FOR-] (3) ($RES_BND_65) (18) [----] for $i1 in 1:3 loop (18) [----] [SCAL] (1) m_flow_IN_con_4[$i1].target = Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UHFuUFF ($RES_BND_66) (18) [----] end for; (19) [FOR-] (3) ($RES_$AUX_100) (19) [----] for $i1 in 1:3 loop (19) [----] [SCAL] (1) Nu_4[$i1] = $FUN_23[$i1] ($RES_$AUX_101) (19) [----] end for; (20) [FOR-] (3) ($RES_BND_67) (20) [----] for $i1 in 1:3 loop (20) [----] [SCAL] (1) m_flow_IN_var_4[$i1].cp = cp[$i1] ($RES_BND_68) (20) [----] end for; (21) [FOR-] (3) ($RES_BND_69) (21) [----] for $i1 in 1:3 loop (21) [----] [SCAL] (1) m_flow_IN_var_4[$i1].eta = eta[$i1] ($RES_BND_70) (21) [----] end for; (22) [ARRY] (3) m_flow = {(input_mflow_0.y * eta[1]) / eta[3], (input_mflow_0.y * eta[2]) / eta[3], input_mflow_0.y} ($RES_BND_12) (23) [SCAL] (1) $TEV_3 = time < input_mflow_0.startTime ($RES_EVT_105) (24) [FOR-] (3) ($RES_BND_13) (24) [----] for $i1 in 1:3 loop (24) [----] [SCAL] (1) m_flow_IN_con_1[$i1].d_hyd = d_hyd ($RES_BND_14) (24) [----] end for; (25) [SCAL] (1) $TEV_4 = time < (input_mflow_0.startTime + input_mflow_0.duration) ($RES_EVT_106) (26) [FOR-] (15) ($RES_$AUX_80) (26) [----] for $i1 in 1:3 loop (26) [----] [TUPL] (5) ($FUN_20[$i1], $FUN_21[$i1], $FUN_22[$i1], $FUN_23[$i1], $FUN_24[$i1]) = Modelica.Fluid.Dissipation.HeatTransfer.StraightPipe.kc_laminar(m_flow_IN_con_4[$i1], m_flow_IN_var_4[$i1]) ($RES_$AUX_81) (26) [----] end for; (27) [FOR-] (3) ($RES_BND_15) (27) [----] for $i1 in 1:3 loop (27) [----] [SCAL] (1) m_flow_IN_con_1[$i1].L = L ($RES_BND_16) (27) [----] end for; (28) [FOR-] (3) ($RES_BND_31) (28) [----] for $i1 in 1:3 loop (28) [----] [SCAL] (1) m_flow_IN_con_2[$i1].L = L ($RES_BND_32) (28) [----] end for; (29) [FOR-] (15) ($RES_$AUX_82) (29) [----] for $i1 in 1:3 loop (29) [----] [TUPL] (5) ($FUN_15[$i1], $FUN_16[$i1], $FUN_17[$i1], $FUN_18[$i1], $FUN_19[$i1]) = Modelica.Fluid.Dissipation.HeatTransfer.StraightPipe.kc_laminar(m_flow_IN_con_3[$i1], m_flow_IN_var_3[$i1]) ($RES_$AUX_83) (29) [----] end for; (30) [FOR-] (3) ($RES_BND_17) (30) [----] for $i1 in 1:3 loop (30) [----] [SCAL] (1) m_flow_IN_con_1[$i1].target = Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UWTuDFF ($RES_BND_18) (30) [----] end for; (31) [FOR-] (3) ($RES_BND_33) (31) [----] for $i1 in 1:3 loop (31) [----] [SCAL] (1) m_flow_IN_con_2[$i1].target = Modelica.Fluid.Dissipation.Utilities.Types.HeatTransferBoundary.UHFuDFF ($RES_BND_34) (31) [----] end for; (32) [FOR-] (15) ($RES_$AUX_84) (32) [----] for $i1 in 1:3 loop (32) [----] [TUPL] (5) ($FUN_10[$i1], $FUN_11[$i1], $FUN_12[$i1], $FUN_13[$i1], $FUN_14[$i1]) = Modelica.Fluid.Dissipation.HeatTransfer.StraightPipe.kc_laminar(m_flow_IN_con_2[$i1], m_flow_IN_var_2[$i1]) ($RES_$AUX_85) (32) [----] end for; (33) [FOR-] (3) ($RES_BND_19) (33) [----] for $i1 in 1:3 loop (33) [----] [SCAL] (1) m_flow_IN_var_1[$i1].cp = cp[$i1] ($RES_BND_20) (33) [----] end for; (34) [FOR-] (3) ($RES_BND_35) (34) [----] for $i1 in 1:3 loop (34) [----] [SCAL] (1) m_flow_IN_var_2[$i1].cp = cp[$i1] ($RES_BND_36) (34) [----] end for; (35) [FOR-] (15) ($RES_$AUX_86) (35) [----] for $i1 in 1:3 loop (35) [----] [TUPL] (5) ($FUN_5[$i1], $FUN_6[$i1], $FUN_7[$i1], $FUN_8[$i1], $FUN_9[$i1]) = Modelica.Fluid.Dissipation.HeatTransfer.StraightPipe.kc_laminar(m_flow_IN_con_1[$i1], m_flow_IN_var_1[$i1]) ($RES_$AUX_87) (35) [----] end for; (36) [FOR-] (3) ($RES_BND_51) (36) [----] for $i1 in 1:3 loop (36) [----] [SCAL] (1) m_flow_IN_var_3[$i1].cp = cp[$i1] ($RES_BND_52) (36) [----] end for; (37) [FOR-] (3) ($RES_BND_37) (37) [----] for $i1 in 1:3 loop (37) [----] [SCAL] (1) m_flow_IN_var_2[$i1].eta = eta[$i1] ($RES_BND_38) (37) [----] end for; (38) [FOR-] (3) ($RES_BND_53) (38) [----] for $i1 in 1:3 loop (38) [----] [SCAL] (1) m_flow_IN_var_3[$i1].eta = eta[$i1] ($RES_BND_54) (38) [----] end for; (39) [FOR-] (3) ($RES_BND_39) (39) [----] for $i1 in 1:3 loop (39) [----] [SCAL] (1) m_flow_IN_var_2[$i1].lambda = lambda[$i1] ($RES_BND_40) (39) [----] end for; (40) [FOR-] (3) ($RES_BND_55) (40) [----] for $i1 in 1:3 loop (40) [----] [SCAL] (1) m_flow_IN_var_3[$i1].lambda = lambda[$i1] ($RES_BND_56) (40) [----] end for; (41) [FOR-] (3) ($RES_BND_71) (41) [----] for $i1 in 1:3 loop (41) [----] [SCAL] (1) m_flow_IN_var_4[$i1].lambda = lambda[$i1] ($RES_BND_72) (41) [----] end for; (42) [FOR-] (3) ($RES_BND_57) (42) [----] for $i1 in 1:3 loop (42) [----] [SCAL] (1) m_flow_IN_var_3[$i1].rho = rho[$i1] ($RES_BND_58) (42) [----] end for; (43) [FOR-] (3) ($RES_BND_73) (43) [----] for $i1 in 1:3 loop (43) [----] [SCAL] (1) m_flow_IN_var_4[$i1].rho = rho[$i1] ($RES_BND_74) (43) [----] end for; (44) [FOR-] (3) ($RES_BND_59) (44) [----] for $i1 in 1:3 loop (44) [----] [SCAL] (1) m_flow_IN_var_3[$i1].m_flow = m_flow[$i1] ($RES_BND_60) (44) [----] end for; (45) [FOR-] (3) ($RES_BND_75) (45) [----] for $i1 in 1:3 loop (45) [----] [SCAL] (1) m_flow_IN_var_4[$i1].m_flow = m_flow[$i1] ($RES_BND_76) (45) [----] end for; (46) [SCAL] (1) Re = Re_1[1] ($RES_BND_77)