Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr ModelicaTest_3.2.1_ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.1+maint.om/package.mo", uses=false) Using package ModelicaTest with version 3.2.1 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.1+maint.om/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.1_ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT") translateModel(ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTest_3.2.1_ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001144/0.001144, allocations: 110.3 kB / 16.42 MB, free: 6.418 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001088/0.001088, allocations: 190 kB / 17.36 MB, free: 5.684 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.246/1.246, allocations: 205.1 MB / 223.2 MB, free: 12.2 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTest 3.2.1+maint.om/package.mo): time 0.1637/0.1637, allocations: 38.01 MB / 308.6 MB, free: 5.961 MB / 254.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 1.452e-05/1.453e-05, allocations: 6.219 kB / 433.6 MB, free: 14.46 MB / 318.1 MB Notification: Performance of NFInst.instantiate(ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT): time 0.03702/0.03704, allocations: 43.95 MB / 477.6 MB, free: 2.344 MB / 350.1 MB Notification: Performance of NFInst.instExpressions: time 0.005301/0.04237, allocations: 4.374 MB / 482 MB, free: 13.96 MB / 366.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0003546/0.04275, allocations: 23.88 kB / 482 MB, free: 13.93 MB / 366.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0007443/0.0435, allocations: 318 kB / 482.3 MB, free: 13.62 MB / 366.1 MB Notification: Performance of NFTyping.typeBindings: time 0.001481/0.04499, allocations: 0.8433 MB / 483.1 MB, free: 12.77 MB / 366.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.001888/0.04698, allocations: 0.8955 MB / 484 MB, free: 11.88 MB / 366.1 MB Notification: Performance of NFFlatten.flatten: time 0.001838/0.04883, allocations: 1.867 MB / 485.9 MB, free: 10.01 MB / 366.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0005714/0.04942, allocations: 473.5 kB / 486.4 MB, free: 9.551 MB / 366.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.09277/0.1422, allocations: 44.59 MB / 0.5185 GB, free: 12.46 MB / 414.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.01583/0.1581, allocations: 7.932 MB / 0.5263 GB, free: 4.43 MB / 414.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0002044/0.1583, allocations: 56 kB / 0.5263 GB, free: 4.375 MB / 414.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.1844/0.3427, allocations: 10.68 MB / 0.5367 GB, free: 56.83 MB / 414.1 MB Notification: Performance of combineBinaries: time 0.0008767/0.3436, allocations: 1.3 MB / 0.538 GB, free: 56.5 MB / 414.1 MB Notification: Performance of replaceArrayConstructors: time 0.0003669/0.344, allocations: 0.8263 MB / 0.5388 GB, free: 56.15 MB / 414.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0001484/0.3441, allocations: 118.1 kB / 0.5389 GB, free: 56.15 MB / 414.1 MB Notification: Performance of FrontEnd: time 0.0001333/0.3443, allocations: 24.03 kB / 0.539 GB, free: 56.15 MB / 414.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 130 (104) * Number of variables: 134 (104) Notification: Performance of Bindings: time 0.002339/0.3466, allocations: 3.508 MB / 0.5424 GB, free: 54.88 MB / 414.1 MB Notification: Performance of FunctionAlias: time 0.000151/0.3468, allocations: 147.4 kB / 0.5425 GB, free: 54.86 MB / 414.1 MB Notification: Performance of Early Inline: time 0.001496/0.3483, allocations: 1.751 MB / 0.5442 GB, free: 54.73 MB / 414.1 MB Notification: Performance of simplify1: time 0.0001853/0.3485, allocations: 130.2 kB / 0.5444 GB, free: 54.72 MB / 414.1 MB Notification: Performance of Alias: time 0.001639/0.3501, allocations: 1.568 MB / 0.5459 GB, free: 54.2 MB / 414.1 MB Notification: Performance of simplify2: time 0.0001358/0.3503, allocations: 135 kB / 0.546 GB, free: 54.2 MB / 414.1 MB Notification: Performance of Events: time 0.0003621/0.3506, allocations: 325.1 kB / 0.5463 GB, free: 54.14 MB / 414.1 MB Notification: Performance of Detect States: time 0.0005044/0.3511, allocations: 0.5269 MB / 0.5468 GB, free: 54.07 MB / 414.1 MB Notification: Performance of Partitioning: time 0.0006793/0.3518, allocations: 0.8492 MB / 0.5477 GB, free: 53.65 MB / 414.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency shortPipe.port_b.m_flow could not be divided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * (997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + shortPipe.flowModel.states.T)) - 2.571314017648316e-4 * ((-298.15) + shortPipe.flowModel.states.p)))), -shortPipe.port_b.m_flow / ((997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + shortPipe.flowModel.states.T)) - 2.571314017648316e-4 * ((-298.15) + shortPipe.flowModel.states.p))) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_128) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (82/109) *************************** (1) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.T (start = {288.15 for $i1 in 1:2}, min = {1.0 for $i1 in 1:2}, max = {1e4 for $i1 in 1:2}, nominal = {300.0 for $i1 in 1:2}) (2) [ALGB] (1) Real ambient.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (3) [ALGB] (1) Real fixedMassFlowRate.medium.h (4) [ALGB] (1) Real[1] shortPipe.flowModel.Ib_flows (5) [ALGB] (1) Real fixedMassFlowRate.medium.d (start = 1.0, min = 0.0, max = 1e5, nominal = 1.0) (6) [ALGB] (1) Real ambient.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * ambient.medium.p_bar) (7) [ALGB] (1) Real[1] volume.heatTransfer.Q_flows (8) [ALGB] (1) Real[1] shortPipe.flowModel.Is (9) [ALGB] (2) Real[2] volume.portInDensities (start = {1.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {1.0 for $i1 in 1:2}) (10) [ALGB] (2) Real[2] shortPipe.flowModel.mus = {shortPipe.flowModel.mu_nominal for $i1 in 1:2} (start = {0.001 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {0.001 for $i1 in 1:2}) (11) [DER-] (1) Real $DER.volume.medium.p_bar (12) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.T = {volume.medium.state.T} (start = {288.15 for $i1 in 1:1}, min = {1.0 for $i1 in 1:1}, max = {1e4 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (13) [ALGB] (2) protected Real[2] volume.portsData_height (14) [ALGB] (2) Real[2] shortPipe.flowModel.rhos = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT.shortPipe.flowModel.Medium.density(shortPipe.flowModel.states[$i1]) for $i1 in 1:2} (start = {1.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {1.0 for $i1 in 1:2}) (15) [ALGB] (1) Real ambient.medium.T_degC = Modelica.SIunits.Conversions.to_degC(-((-273.15) - ambient.medium.T_degC)) (16) [ALGB] (1) stream Real[1] fixedMassFlowRate.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (17) [DISC] (2) Boolean[2] $SEV_11[$i1] (18) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_fg (19) [ALGB] (1) stream Real shortPipe.port_a.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (20) [ALGB] (2) Real[2] volume.portVelocities (21) [ALGB] (1) Real shortPipe.port_a.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (22) [ALGB] (1) Real[1] volume.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (23) [ALGB] (2) Real[2] volume.vessel_ps_static (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (24) [ALGB] (1) Real[1] shortPipe.flowModel.mus_act (start = {0.001 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {0.001 for $i1 in 1:1}) (25) [ALGB] (1) protected Real ambient.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (26) [ALGB] (1) Real[1] shortPipe.flowModel.dps_fg (start = {shortPipe.flowModel.p_a_start - shortPipe.flowModel.p_b_start for $i1 in 1:1}) (27) [ALGB] (1) Real[1] shortPipe.flowModel.m_flows (start = {0.0 for $i1 in 1:1}, min = {-1e60 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, StateSelect = default) (28) [ALGB] (1) Real volume.mb_flow (29) [DISC] (2) protected Boolean[2] volume.regularFlow (start = {true for $i1 in 1:2}) (30) [ALGB] (1) stream Real[1] ambient.ports.h_outflow (min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (31) [ALGB] (1) Real $FUN_3 (32) [ALGB] (1) final input Real[1, 1] volume.heatTransfer.states.p = {volume.medium.state.p} (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (33) [ALGB] (1) Real $FUN_2 (34) [ALGB] (1) final Real[1] shortPipe.flowModel.pathLengths = {shortPipe.length} (35) [DISC] (2) Boolean[2] $SEV_9[$i1] (36) [ALGB] (1) flow Real[1] fixedMassFlowRate.ports.m_flow (min = {-1e60}, max = {1e60}) (37) [ALGB] (2) Real[2] volume.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (38) [ALGB] (1) Real[1] fixedMassFlowRate.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (39) [DISC] (2) Boolean[2] $SEV_10[$i1] (40) [ALGB] (1) protected Real ambient.state.T (start = 288.15, min = 1.0, max = 1e4, nominal = 300.0) (41) [ALGB] (2) Real[2] volume.ports_E_flow (42) [ALGB] (1) stream Real shortPipe.port_b.h_outflow (min = -1e10, max = 1e10, nominal = 1e6) (43) [DISC] (1) Boolean $SEV_13 (44) [DISC] (1) Boolean $SEV_12 (45) [ALGB] (1) final Real[1] shortPipe.flowModel.dheights = {shortPipe.height_ab} (46) [ALGB] (2) Real[2] volume.s (start = {volume.fluidLevel_max for $i1 in 1:2}) (47) [ALGB] (1) Real fixedMassFlowRate.medium.p_bar = Modelica.SIunits.Conversions.to_bar(99999.99999999999 * fixedMassFlowRate.medium.p_bar) (48) [ALGB] (1) Real[1] shortPipe.flowModel.Fs_p (49) [ALGB] (1) Real volume.medium.state.T (start = 288.15, min = 1.0, max = 1e4, nominal = 300.0) (50) [ALGB] (1) Real volume.Hb_flow (51) [ALGB] (2) flow Real[2] volume.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (52) [DISC] (2) Boolean[2] $SEV_8[$i1] (53) [DER-] (1) Real $DER.volume.U (54) [ALGB] (1) Real volume.medium.d (start = 1.0, min = 0.0, max = 1e5, nominal = 1.0) (55) [ALGB] (2) Real[2] volume.ports.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (56) [ALGB] (2) final Real[2] shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} (57) [ALGB] (1) Real volume.medium.h (start = volume.h_start) (58) [DISC] (1) Boolean $SEV_4 (59) [ALGB] (1) flow Real shortPipe.port_b.m_flow (min = -1e5, max = 1e60) (60) [ALGB] (1) Real ambient.medium.state.T (start = 288.15, min = 1.0, max = 1e4, nominal = 300.0) (61) [ALGB] (1) Real shortPipe.port_b.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (62) [ALGB] (4) input Real[2, 2] shortPipe.flowModel.states.p (start = {1e5 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (63) [DISC] (1) Boolean $SEV_1 (64) [ALGB] (2) Real[2] shortPipe.flowModel.vs = {(-shortPipe.port_b.m_flow) / (shortPipe.flowModel.crossAreas[1] * ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT.shortPipe.Medium.density(shortPipe.flowModel.states[1])), -shortPipe.port_b.m_flow / (ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT.shortPipe.Medium.density(shortPipe.flowModel.states[2]) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel (65) [ALGB] (1) Real[1] ambient.ports.p (start = {1e5 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (66) [ALGB] (1) Real volume.Qb_flow (67) [ALGB] (1) Real ambient.medium.d (start = 1.0, min = 0.0, max = 1e5, nominal = 1.0) (68) [ALGB] (1) flow Real[1] ambient.ports.m_flow (min = {-1e60}, max = {1e60}) (69) [ALGB] (1) Real volume.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (70) [DER-] (1) Real $DER.volume.medium.T_degC (71) [ALGB] (1) Real ambient.medium.h (72) [DER-] (1) Real $DER.volume.m (73) [ALGB] (1) Real volume.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (74) [ALGB] (1) Real fixedMassFlowRate.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (75) [ALGB] (2) stream Real[2] volume.ports.h_outflow (min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (76) [ALGB] (1) Real[1] volume.heatTransfer.Ts = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT.volume.heatTransfer.Medium.temperature(volume.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (77) [DISC] (2) protected Boolean[2] volume.inFlow (start = {false for $i1 in 1:2}) (78) [ALGB] (1) Real[1] shortPipe.flowModel.rhos_act (start = {1.0 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e5 for $i1 in 1:1}, nominal = {1.0 for $i1 in 1:1}) (79) [ALGB] (1) Real fixedMassFlowRate.medium.state.p (start = 1e5, min = 0.0, max = 1e8, nominal = 1e5) (80) [ALGB] (1) Real ambient.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (81) [ALGB] (1) flow Real[1] volume.heatTransfer.heatPorts.Q_flow (82) [DISC] (2) Boolean[2] $SEV_7[$i1] System Equations (83/105) *************************** (1) [SCAL] (1) fixedMassFlowRate.medium.h = 104929.29464256502 + 4181.885502948851 * ((-298.15) + fixedMassFlowRate.T) + 9.260700016004721e-4 * ((-101325.0) + 99999.99999999999 * fixedMassFlowRate.medium.p_bar) ($RES_SIM_50) (2) [SCAL] (1) ambient.ports[1].p = 99999.99999999999 * ambient.medium.p_bar ($RES_SIM_15) (3) [SCAL] (1) fixedMassFlowRate.medium.d = 997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + 99999.99999999999 * fixedMassFlowRate.medium.p_bar)) - 2.571314017648316e-4 * ((-298.15) + fixedMassFlowRate.T)) ($RES_SIM_51) (4) [SCAL] (1) ambient.ports[1].h_outflow = ambient.medium.h ($RES_SIM_16) (5) [SCAL] (1) volume.mb_flow = sum(volume.ports.m_flow) ($RES_$AUX_143) (6) [SCAL] (1) $DER.volume.m = volume.mb_flow ($RES_SIM_52) (7) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.state.T ($RES_SIM_17) (8) [SCAL] (1) $FUN_2 = sum(volume.ports_H_flow) ($RES_$AUX_142) (9) [SCAL] (1) $DER.volume.U = volume.Qb_flow + volume.Hb_flow ($RES_SIM_53) (10) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.state.p ($RES_SIM_18) (11) [SCAL] (1) $FUN_3 = sum(volume.ports_E_flow) ($RES_$AUX_141) (12) [SCAL] (1) volume.U = volume.m * volume.medium.u ($RES_SIM_54) (13) [SCAL] (1) -fixedMassFlowRate.m_flow = sum(fixedMassFlowRate.ports.m_flow) ($RES_$AUX_140) (14) [SCAL] (1) volume.Qb_flow = volume.heatTransfer.Q_flows[1] ($RES_SIM_90) (15) [SCAL] (1) volume.m = volume.V * volume.medium.d ($RES_SIM_55) (16) [SCAL] (1) volume.Hb_flow = $FUN_2 + $FUN_3 ($RES_SIM_91) (17) [FOR-] (2) ($RES_SIM_56) (17) [----] for $i1 in 1:2 loop (17) [----] [SCAL] (1) volume.portVelocities[$i1] = 0.0 ($RES_SIM_57) (17) [----] end for; (18) [FOR-] (2) ($RES_SIM_93) (18) [----] for $i1 in 1:2 loop (18) [----] [SCAL] (1) volume.vessel_ps_static[$i1] = 99999.99999999999 * volume.medium.p_bar ($RES_SIM_94) (18) [----] end for; (19) [ARRY] (1) volume.heatTransfer.Q_flows = volume.heatTransfer.heatPorts.Q_flow ($RES_SIM_96) (20) [ARRY] (1) volume.heatTransfer.Ts = volume.heatTransfer.heatPorts.T ($RES_SIM_97) (21) [SCAL] (1) -((-273.15) - volume.medium.T_degC) = volume.medium.state.T ($RES_SIM_104) (22) [SCAL] (1) 99999.99999999999 * volume.medium.p_bar = volume.medium.state.p ($RES_SIM_105) (23) [SCAL] (1) volume.medium.u = volume.medium.h - (99999.99999999999 * volume.medium.p_bar) / volume.medium.d ($RES_SIM_106) (24) [SCAL] (1) volume.medium.h = 104929.29464256502 + 4181.885502948851 * ((-298.15) - ((-273.15) - volume.medium.T_degC)) + 9.260700016004721e-4 * ((-101325.0) + 99999.99999999999 * volume.medium.p_bar) ($RES_SIM_107) (25) [SCAL] (1) volume.medium.d = 997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + 99999.99999999999 * volume.medium.p_bar)) - 2.571314017648316e-4 * ((-298.15) - ((-273.15) - volume.medium.T_degC))) ($RES_SIM_108) (26) [FOR-] (2) ($RES_SIM_62) (26) [----] for $i1 in 1:2 loop (26) [----] [SCAL] (1) volume.regularFlow[$i1] = $SEV_7[$i1] ($RES_SIM_63) (26) [----] end for; (27) [SCAL] (1) -((-273.15) - ambient.medium.T_degC) = ambient.medium.state.T ($RES_SIM_27) (28) [SCAL] (1) shortPipe.port_b.m_flow + ambient.ports[1].m_flow = 0.0 ($RES_SIM_109) (29) [SCAL] (1) ambient.state.p = ambient.p ($RES_SIM_144) (30) [SCAL] (1) 99999.99999999999 * ambient.medium.p_bar = ambient.medium.state.p ($RES_SIM_28) (31) [SCAL] (1) ambient.state.T = ambient.T ($RES_SIM_145) (32) [FOR-] (2) ($RES_SIM_64) (32) [----] for $i1 in 1:2 loop (32) [----] [SCAL] (1) volume.inFlow[$i1] = $SEV_11[$i1] ($RES_SIM_65) (32) [----] end for; (33) [SCAL] (1) ambient.medium.u = ambient.medium.h - (99999.99999999999 * ambient.medium.p_bar) / ambient.medium.d ($RES_SIM_29) (34) [FOR-] (2) ($RES_SIM_66) (34) [----] for $i1 in 1:2 loop (34) [----] [-IF-] (1)if volume.regularFlow[$i1] then (34) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_68) (34) [----] [----] elseif volume.inFlow[$i1] then (34) [----] [----] [SCAL] (1) volume.ports[$i1].p = volume.vessel_ps_static[$i1] ($RES_SIM_69) (34) [----] [----] else (34) [----] [----] [SCAL] (1) volume.ports[$i1].m_flow = 0.0 ($RES_SIM_70) (34) [----] [----] end if; (34) [----] end for; (35) [ARRY] (1) volume.heatTransfer.Ts = {volume.heatTransfer.states.p} ($RES_BND_120) (36) [SCAL] (1) volume.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_110) (37) [SCAL] (1) volume.ports[2].m_flow - shortPipe.port_b.m_flow = 0.0 ($RES_SIM_111) (38) [SCAL] (1) shortPipe.port_b.p = ambient.ports[1].p ($RES_SIM_112) (39) [SCAL] (1) ambient.medium.h = 104929.29464256502 + 4181.885502948851 * ((-298.15) - ((-273.15) - ambient.medium.T_degC)) + 9.260700016004721e-4 * ((-101325.0) + 99999.99999999999 * ambient.medium.p_bar) ($RES_SIM_30) (40) [SCAL] (1) volume.ports[2].p = shortPipe.port_a.p ($RES_SIM_113) (41) [SCAL] (1) ambient.medium.d = 997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + 99999.99999999999 * ambient.medium.p_bar)) - 2.571314017648316e-4 * ((-298.15) - ((-273.15) - ambient.medium.T_degC))) ($RES_SIM_31) (42) [SCAL] (1) volume.ports[1].m_flow + fixedMassFlowRate.ports[1].m_flow = 0.0 ($RES_SIM_114) (43) [SCAL] (1) fixedMassFlowRate.ports[1].p = 99999.99999999999 * fixedMassFlowRate.medium.p_bar ($RES_SIM_32) (44) [SCAL] (1) fixedMassFlowRate.ports[1].p = volume.ports[1].p ($RES_SIM_115) (45) [SCAL] (1) fixedMassFlowRate.ports[1].h_outflow = fixedMassFlowRate.medium.h ($RES_SIM_33) (46) [ARRY] (2) shortPipe.flowModel.vs = {-shortPipe.port_b.m_flow / (shortPipe.flowModel.crossAreas[1] * (997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + shortPipe.flowModel.states.T)) - 2.571314017648316e-4 * ((-298.15) + shortPipe.flowModel.states.p)))), -shortPipe.port_b.m_flow / ((997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + shortPipe.flowModel.states.T)) - 2.571314017648316e-4 * ((-298.15) + shortPipe.flowModel.states.p))) * shortPipe.flowModel.crossAreas[2])} / shortPipe.nParallel ($RES_BND_128) (47) [ARRY] (2) shortPipe.flowModel.crossAreas = {shortPipe.crossArea, shortPipe.crossArea} ($RES_BND_129) (48) [FOR-] (2) ($RES_SIM_71) (48) [----] for $i1 in 1:2 loop (48) [----] [-IF-] (1)if volume.regularFlow[$i1] then (48) [----] [----] [SCAL] (1) volume.s[$i1] = 0.0 - volume.portsData_height[$i1] ($RES_SIM_73) (48) [----] [----] elseif volume.inFlow[$i1] then (48) [----] [----] [SCAL] (1) volume.s[$i1] = volume.ports[$i1].m_flow ($RES_SIM_74) (48) [----] [----] else (48) [----] [----] [SCAL] (1) volume.s[$i1] = ((volume.ports[$i1].p - volume.vessel_ps_static[$i1]) / 101325.0) * (volume.portsData_height[$i1] - 0.0) ($RES_SIM_75) (48) [----] [----] end if; (48) [----] end for; (49) [FOR-] (2) ($RES_SIM_76) (49) [----] for $i1 in 1:2 loop (49) [----] [SCAL] (1) volume.ports[$i1].h_outflow = volume.medium.h ($RES_SIM_77) (49) [----] end for; (50) [FOR-] (2) ($RES_SIM_78) (50) [----] for $i1 in 1:2 loop (50) [----] [SCAL] (1) volume.ports_E_flow[$i1] = volume.ports[$i1].m_flow * (volume.portVelocities[$i1] * 0.5 * volume.portVelocities[$i1] + system.g * volume.portsData_height[$i1]) ($RES_SIM_79) (50) [----] end for; (51) [SCAL] (1) $SEV_1 = shortPipe.flowModel.m_flows[1] > 0.0 ($RES_EVT_152) (52) [SCAL] (1) $SEV_4 = abs(sum({abs(fixedMassFlowRate.ports[1].m_flow)}) - abs(fixedMassFlowRate.ports[1].m_flow)) <= 1e-60 ($RES_EVT_155) (53) [FOR-] (2) ($RES_EVT_158) (53) [----] for $i1 in 1:2 loop (53) [----] [SCAL] (1) $SEV_7[$i1] = 0.0 >= volume.portsData_height[$i1] ($RES_EVT_159) (53) [----] end for; (54) [ARRY] (1) shortPipe.flowModel.dheights = {shortPipe.height_ab} ($RES_BND_132) (55) [ARRY] (1) shortPipe.flowModel.pathLengths = {shortPipe.length} ($RES_BND_133) (56) [FOR-] (2) ($RES_BND_134) (56) [----] for $i1 in 1:2 loop (56) [----] [SCAL] (1) shortPipe.flowModel.rhos[$i1] = 997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + shortPipe.flowModel.states.T)) - 2.571314017648316e-4 * ((-298.15) + shortPipe.flowModel.states.p)) ($RES_BND_135) (56) [----] end for; (57) [FOR-] (2) ($RES_BND_136) (57) [----] for $i1 in 1:2 loop (57) [----] [SCAL] (1) shortPipe.flowModel.mus[$i1] = shortPipe.flowModel.mu_nominal ($RES_BND_137) (57) [----] end for; (58) [ARRY] (2) volume.heatTransfer.states = {volume.medium.state} ($RES_BND_138) (59) [ARRY] (4) shortPipe.flowModel.states = {ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT.shortPipe.Medium.ThermodynamicState(shortPipe.port_a.p, 298.15 + 2.3912658519580491e-4 * (((-104929.29464256502) + volume.ports[2].h_outflow) - 9.260700016004721e-4 * ((-101325.0) + shortPipe.port_a.p))), ModelicaTest.Media.TestsWithFluid.MediaTestModels.LinearFluid.LinearWater_pT.shortPipe.Medium.ThermodynamicState(shortPipe.port_b.p, 298.15 + 2.3912658519580491e-4 * (((-104929.29464256502) + ambient.ports[1].h_outflow) - 9.260700016004721e-4 * ((-101325.0) + shortPipe.port_b.p)))} ($RES_BND_139) (60) [SCAL] (1) volume.ports_H_flow[2] = smooth(0, volume.ports[2].m_flow * (if $SEV_12 then shortPipe.port_a.h_outflow else volume.ports[2].h_outflow)) ($RES_SIM_80) (61) [SCAL] (1) volume.portInDensities[2] = 997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + volume.vessel_ps_static[2])) - 2.571314017648316e-4 * (2.3912658519580491e-4 * (((-104929.29464256502) + shortPipe.port_a.h_outflow) - 9.260700016004721e-4 * ((-101325.0) + volume.vessel_ps_static[2])))) ($RES_SIM_81) (62) [SCAL] (1) volume.ports_H_flow[1] = smooth(0, volume.ports[1].m_flow * (if $SEV_13 then fixedMassFlowRate.ports[1].h_outflow else volume.ports[1].h_outflow)) ($RES_SIM_82) (63) [SCAL] (1) volume.portInDensities[1] = 997.0480319717385 * ((1.0 + 4.5154260364919865e-10 * ((-101325.0) + volume.vessel_ps_static[1])) - 2.571314017648316e-4 * (2.3912658519580491e-4 * (((-104929.29464256502) + fixedMassFlowRate.ports[1].h_outflow) - 9.260700016004721e-4 * ((-101325.0) + volume.vessel_ps_static[1])))) ($RES_SIM_83) (64) [SCAL] (1) 99999.99999999999 * fixedMassFlowRate.medium.p_bar = fixedMassFlowRate.medium.state.p ($RES_SIM_48) (65) [SCAL] (1) fixedMassFlowRate.medium.u = fixedMassFlowRate.medium.h - (99999.99999999999 * fixedMassFlowRate.medium.p_bar) / fixedMassFlowRate.medium.d ($RES_SIM_49) (66) [ARRY] (2) volume.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_86) (67) [FOR-] (2) ($RES_EVT_160) (67) [----] for $i1 in 1:2 loop (67) [----] [SCAL] (1) $SEV_8[$i1] = volume.s[$i1] > 0.0 ($RES_EVT_161) (67) [----] end for; (68) [FOR-] (2) ($RES_EVT_162) (68) [----] for $i1 in 1:2 loop (68) [----] [SCAL] (1) $SEV_9[$i1] = volume.portsData_height[$i1] >= volume.fluidLevel_max ($RES_EVT_163) (68) [----] end for; (69) [FOR-] (2) ($RES_EVT_164) (69) [----] for $i1 in 1:2 loop (69) [----] [SCAL] (1) $SEV_10[$i1] = $SEV_8[$i1] or $SEV_9[$i1] ($RES_EVT_165) (69) [----] end for; (70) [ARRY] (1) shortPipe.flowModel.dps_fg = {(2.0 * (shortPipe.flowModel.Fs_fg[1] / shortPipe.flowModel.nParallel)) / (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2])} ($RES_SIM_9) (71) [FOR-] (2) ($RES_EVT_166) (71) [----] for $i1 in 1:2 loop (71) [----] [SCAL] (1) $SEV_11[$i1] = not volume.regularFlow[$i1] and $SEV_10[$i1] ($RES_EVT_167) (71) [----] end for; (72) [ARRY] (1) shortPipe.flowModel.Is = {shortPipe.flowModel.m_flows[1] * shortPipe.flowModel.pathLengths[1]} ($RES_SIM_8) (73) [ARRY] (1) {0.0} = shortPipe.flowModel.Ib_flows - (shortPipe.flowModel.Fs_fg + shortPipe.flowModel.Fs_p) ($RES_SIM_7) (74) [SCAL] (1) $SEV_12 = volume.ports[2].m_flow > 0.0 ($RES_EVT_168) (75) [SCAL] (1) -shortPipe.port_b.m_flow = shortPipe.flowModel.m_flows[1] ($RES_SIM_6) (76) [SCAL] (1) $SEV_13 = volume.ports[1].m_flow > 0.0 ($RES_EVT_169) (77) [SCAL] (1) shortPipe.port_b.h_outflow = volume.ports[2].h_outflow - system.g * shortPipe.height_ab ($RES_SIM_4) (78) [SCAL] (1) shortPipe.port_a.h_outflow = ambient.ports[1].h_outflow + system.g * shortPipe.height_ab ($RES_SIM_3) (79) [ARRY] (1) shortPipe.flowModel.Fs_p = shortPipe.flowModel.nParallel * {0.5 * (shortPipe.flowModel.crossAreas[1] + shortPipe.flowModel.crossAreas[2]) * (shortPipe.flowModel.states.T - shortPipe.flowModel.states.T)} ($RES_SIM_10) (80) [ARRY] (1) shortPipe.flowModel.Ib_flows = {0.0} ($RES_SIM_11) (81) [SCAL] (1) shortPipe.flowModel.rhos_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2]) ($RES_SIM_12) (82) [SCAL] (1) shortPipe.flowModel.mus_act[1] = noEvent(if $SEV_1 then shortPipe.flowModel.mus[1] else shortPipe.flowModel.mus[2]) ($RES_SIM_13) (83) [ARRY] (1) shortPipe.flowModel.dps_fg = {shortPipe.flowModel.dheights[1] * shortPipe.flowModel.g * (if $SEV_1 then shortPipe.flowModel.rhos[1] else shortPipe.flowModel.rhos[2])} + shortPipe.flowModel.dp_nominal / shortPipe.flowModel.m_flow_nominal * shortPipe.flowModel.m_flows ($RES_SIM_14)