Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries/ --ompython_omhome=/usr ModelicaTestOverdetermined_ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTestOverdetermined 4.0.0+maint.om/package.mo", uses=false) Using package ModelicaTestOverdetermined with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTestOverdetermined 4.0.0+maint.om/package.mo) Using package Modelica with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 4.0.0+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTestOverdetermined_ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature") translateModel(ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="ModelicaTestOverdetermined_ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001163/0.001163, allocations: 112.9 kB / 16.38 MB, free: 6 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001192/0.001192, allocations: 187.9 kB / 17.31 MB, free: 5.621 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 4.0.0+maint.om/package.mo): time 1.26/1.26, allocations: 222.9 MB / 241 MB, free: 15.22 MB / 206.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaTestOverdetermined 4.0.0+maint.om/package.mo): time 0.003488/0.003487, allocations: 0.5608 MB / 291.7 MB, free: 14.24 MB / 238.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.752e-05/2.782e-05, allocations: 2.281 kB / 352.9 MB, free: 0.9766 MB / 286.1 MB Notification: Performance of NFInst.instantiate(ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature): time 0.4678/0.4678, allocations: 179.3 MB / 0.5198 GB, free: 1.078 MB / 366.1 MB Notification: Performance of NFInst.instExpressions: time 0.005297/0.4731, allocations: 3.176 MB / 0.5229 GB, free: 1.023 MB / 366.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0007344/0.4739, allocations: 23.12 kB / 0.5229 GB, free: 1.023 MB / 366.1 MB Notification: Performance of NFTyping.typeComponents: time 0.001033/0.475, allocations: 399.9 kB / 0.5233 GB, free: 1.016 MB / 366.1 MB Notification: Performance of NFTyping.typeBindings: time 0.004313/0.4793, allocations: 1.587 MB / 0.5249 GB, free: 0.957 MB / 366.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.003111/0.4825, allocations: 1.108 MB / 0.5259 GB, free: 0.9375 MB / 366.1 MB Notification: Performance of NFFlatten.flatten: time 0.003541/0.486, allocations: 2.376 MB / 0.5283 GB, free: 0.9219 MB / 366.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0009838/0.487, allocations: 0.6126 MB / 0.5289 GB, free: 0.8945 MB / 366.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.002166/0.4892, allocations: 1.111 MB / 0.5299 GB, free: 0.8828 MB / 366.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0008912/0.4901, allocations: 0.7057 MB / 0.5306 GB, free: 0.8828 MB / 366.1 MB Notification: Performance of NFPackage.collectConstants: time 0.000114/0.4902, allocations: 74.66 kB / 0.5307 GB, free: 0.8828 MB / 366.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.002422/0.4926, allocations: 1.025 MB / 0.5317 GB, free: 0.8633 MB / 366.1 MB Notification: Performance of combineBinaries: time 0.001179/0.4938, allocations: 1.537 MB / 0.5332 GB, free: 380 kB / 366.1 MB Notification: Performance of replaceArrayConstructors: time 0.0006035/0.4944, allocations: 0.9662 MB / 0.5341 GB, free: 15.86 MB / 382.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0002818/0.4947, allocations: 144.8 kB / 0.5343 GB, free: 15.83 MB / 382.1 MB Notification: Performance of FrontEnd: time 0.0001516/0.4949, allocations: 23.97 kB / 0.5343 GB, free: 15.83 MB / 382.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 178 (143) * Number of variables: 178 (142) Notification: Performance of Bindings: time 0.003825/0.4987, allocations: 4.41 MB / 0.5386 GB, free: 14.29 MB / 382.1 MB Notification: Performance of FunctionAlias: time 0.0001945/0.4989, allocations: 195.3 kB / 0.5388 GB, free: 14.27 MB / 382.1 MB Notification: Performance of Early Inline: time 0.002292/0.5012, allocations: 2.562 MB / 0.5413 GB, free: 14.12 MB / 382.1 MB Notification: Performance of simplify1: time 0.0001496/0.5014, allocations: 143.2 kB / 0.5414 GB, free: 14.12 MB / 382.1 MB Notification: Performance of Alias: time 0.002103/0.5035, allocations: 2.213 MB / 0.5436 GB, free: 13.36 MB / 382.1 MB Notification: Performance of simplify2: time 0.0001283/0.5036, allocations: 153 kB / 0.5437 GB, free: 13.35 MB / 382.1 MB Notification: Performance of Events: time 0.0006733/0.5043, allocations: 0.6532 MB / 0.5444 GB, free: 13.17 MB / 382.1 MB Notification: Performance of Detect States: time 0.000726/0.5051, allocations: 0.7704 MB / 0.5451 GB, free: 12.76 MB / 382.1 MB Notification: Performance of Partitioning: time 0.001056/0.5061, allocations: 1.165 MB / 0.5463 GB, free: 11.87 MB / 382.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency V1.heatTransfer.states.T could not be devided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) V1.heatTransfer.states = {V1.medium.state} ($RES_BND_202) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (117/151) **************************** (1) [DISC] (2) Boolean[2] $SEV_22[$i1] (2) [ALGB] (1) Real V2.medium.h (start = V2.h_start) (3) [ALGB] (1) Real[1] V1.heatTransfer.Q_flows (4) [ALGB] (1) Real sink.medium.h (5) [DISC] (1) Boolean $SEV_35 (6) [DISC] (1) Boolean $SEV_34 (7) [ALGB] (1) Real sink.medium.d (start = 10.0, min = 0.0, max = 1e5, nominal = 10.0) (8) [ALGB] (1) Real valveLinear.port_a.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (9) [DISC] (1) Boolean $SEV_33 (10) [DISC] (1) Boolean $SEV_32 (11) [ALGB] (2) flow Real[2] V1.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (12) [ALGB] (1) Real V2.Qb_flow (13) [DISC] (1) Boolean $SEV_31 (14) [ALGB] (1) protected Real valveLinear.state_a.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (15) [DISC] (2) protected Boolean[2] V2.regularFlow (start = {true for $i1 in 1:2}) (16) [ALGB] (1) Real V2.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (17) [ALGB] (1) flow Real[1] source.ports.m_flow (min = {-1e60}, max = {1e60}) (18) [DER-] (1) Real $DER.V2.medium.p_bar (19) [ALGB] (1) flow Real[1] V1.heatTransfer.heatPorts.Q_flow (20) [ALGB] (1) Real source.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (21) [ALGB] (1) Real[1] source.ports.p (start = {1e6 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (22) [ALGB] (1) stream Real valveLinear.port_b.h_outflow (start = 298609.6803431054, min = -1e10, max = 1e10, nominal = 1e5) (23) [ALGB] (1) Real valveLinear.port_b_T = Modelica.Fluid.Utilities.regStep(valveLinear.port_b.m_flow, ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.temperature(valveLinear.state_b), ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.temperature(ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.setState_phX(valveLinear.port_b.p, valveLinear.port_b.h_outflow, {})), valveLinear.m_flow_small) (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (24) [ALGB] (2) Real[2] V2.ports.p (start = {1e6 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (25) [ALGB] (1) Real[1] V1.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (26) [ALGB] (1) Real V1.medium.state.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (27) [DISC] (2) protected Boolean[2] V2.inFlow (start = {false for $i1 in 1:2}) (28) [DISC] (2) Boolean[2] $SEV_11[$i1] (29) [ALGB] (1) final input Real[1, 1] V1.heatTransfer.states.T = {V1.medium.state.T} (start = {500.0 for $i1 in 1:1}, min = {200.0 for $i1 in 1:1}, max = {6000.0 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (30) [ALGB] (1) Real V2.medium.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (31) [ALGB] (1) stream Real[1] sink.ports.h_outflow (start = {298609.6803431054}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (32) [ALGB] (1) Real V2.Hb_flow (33) [ALGB] (1) Real sink.medium.p_bar = Modelica.Units.Conversions.to_bar(99999.99999999999 * sink.medium.p_bar) (34) [ALGB] (1) protected Real sink.state.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (35) [DER-] (1) Real $DER.V2.medium.T_degC (36) [ALGB] (1) Real source.medium.h (37) [ALGB] (1) stream Real[1] source.ports.h_outflow (start = {298609.6803431054}, min = {-1e10 for $i1 in 1:1}, max = {1e10 for $i1 in 1:1}, nominal = {1e5 for $i1 in 1:1}) (38) [ALGB] (2) stream Real[2] V1.ports.h_outflow (start = {298609.6803431054 for $ports1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (39) [ALGB] (2) Real[2] V2.portInDensities (start = {10.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {10.0 for $i1 in 1:2}) (40) [ALGB] (1) Real source.medium.d (start = 10.0, min = 0.0, max = 1e5, nominal = 10.0) (41) [ALGB] (1) Real V1.Qb_flow (42) [DER-] (1) Real $DER.V1.m (43) [ALGB] (1) Real sink.medium.T_degC = Modelica.Units.Conversions.to_degC(-((-273.15) - sink.medium.T_degC)) (44) [DISC] (1) Boolean $SEV_25 (45) [DISC] (2) Boolean[2] $SEV_21[$i1] (46) [DISC] (1) Boolean $SEV_24 (47) [DISC] (2) protected Boolean[2] V1.inFlow (start = {false for $i1 in 1:2}) (48) [ALGB] (1) Real source.medium.p_bar = Modelica.Units.Conversions.to_bar(99999.99999999999 * source.medium.p_bar) (49) [ALGB] (2) Real[2] V1.portVelocities (50) [ALGB] (1) Real $FUN_6 (51) [ALGB] (1) Real $FUN_5 (52) [ALGB] (2) Real[2] V2.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (53) [ALGB] (1) Real $FUN_3 (54) [DER-] (1) Real $DER.V1.medium.T_degC (55) [ALGB] (2) Real[2] V1.ports.p (start = {1e6 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (56) [ALGB] (1) Real $FUN_2 (57) [ALGB] (1) Real valveLinear.V_flow = (-valveLinear.port_b.m_flow) / Modelica.Fluid.Utilities.regStep(-valveLinear.port_b.m_flow, ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.density(valveLinear.state_a), ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.density(valveLinear.state_b), valveLinear.m_flow_small) (58) [DISC] (2) Boolean[2] $SEV_9[$i1] (59) [ALGB] (1) final input Real[1, 1] V1.heatTransfer.states.p = {V1.medium.state.p} (start = {1e6 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (60) [ALGB] (1) Real V1.Hb_flow (61) [ALGB] (1) Real V2.medium.state.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (62) [ALGB] (2) Real[2] V1.portInDensities (start = {10.0 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}, nominal = {10.0 for $i1 in 1:2}) (63) [ALGB] (1) Real[1] V2.heatTransfer.Ts = {ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.V2.heatTransfer.Medium.temperature(V2.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (64) [ALGB] (2) stream Real[2] V2.ports.h_outflow (start = {298609.6803431054 for $ports1 in 1:2}, min = {-1e10 for $i1 in 1:2}, max = {1e10 for $i1 in 1:2}, nominal = {1e5 for $i1 in 1:2}) (65) [ALGB] (2) Real[2] V1.vessel_ps_static (start = {1e6 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (66) [ALGB] (1) protected Real valveLinear.state_b.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (67) [ALGB] (1) protected Real sink.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (68) [ALGB] (2) Real[2] V2.ports_E_flow (69) [DER-] (1) Real $DER.V1.U (70) [DISC] (2) Boolean[2] $SEV_10[$i1] (71) [ALGB] (1) Real V1.medium.d (start = 10.0, min = 0.0, max = 1e5, nominal = 10.0) (72) [ALGB] (1) Real[1] V2.heatTransfer.Q_flows (73) [ALGB] (2) protected Real[2] V1.portsData_height (74) [ALGB] (1) Real V1.medium.h (start = V1.h_start) (75) [ALGB] (2) Real[2] V1.s (start = {V1.fluidLevel_max for $i1 in 1:2}) (76) [ALGB] (1) Real V2.mb_flow (77) [ALGB] (1) Real valveLinear.port_a_T = Modelica.Fluid.Utilities.regStep(-valveLinear.port_b.m_flow, ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.temperature(valveLinear.state_a), ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.temperature(ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.setState_phX(valveLinear.port_a.p, valveLinear.port_a.h_outflow, {})), valveLinear.m_flow_small) (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (78) [DISC] (1) Boolean $SEV_13 (79) [DISC] (1) Boolean $SEV_12 (80) [ALGB] (2) flow Real[2] V2.ports.m_flow (min = {-1e5 for $i1 in 1:2}, max = {1e5 for $i1 in 1:2}) (81) [DISC] (2) Boolean[2] $SEV_20[$i1] (82) [ALGB] (1) Real V1.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (83) [ALGB] (1) Real valveLinear.port_b.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (84) [DER-] (1) Real $DER.V1.medium.p_bar (85) [ALGB] (1) protected Real valveLinear.state_b.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (86) [ALGB] (1) Real[1] V2.heatTransfer.heatPorts.T (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (87) [ALGB] (2) Real[2] V2.vessel_ps_static (start = {1e6 for $i1 in 1:2}, min = {0.0 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1e6 for $i1 in 1:2}) (88) [ALGB] (1) Real sink.medium.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (89) [DISC] (2) Boolean[2] $SEV_8[$i1] (90) [DER-] (1) Real $DER.V2.m (91) [DISC] (2) Boolean[2] $SEV_23[$i1] (92) [ALGB] (1) flow Real[1] V2.heatTransfer.heatPorts.Q_flow (93) [ALGB] (1) Real[1] V1.heatTransfer.Ts = {ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.V1.heatTransfer.Medium.temperature(V1.heatTransfer.states[1])} (start = {288.15 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, nominal = {300.0 for $i1 in 1:1}) (94) [ALGB] (1) Real V1.mb_flow (95) [ALGB] (2) protected Real[2] V2.portsData_height (96) [ALGB] (1) final input Real[1, 1] V2.heatTransfer.states.p = {V2.medium.state.p} (start = {1e6 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (97) [DISC] (1) Boolean $SEV_3 (98) [ALGB] (1) stream Real valveLinear.port_a.h_outflow (start = 298609.6803431054, min = -1e10, max = 1e10, nominal = 1e5) (99) [ALGB] (1) flow Real valveLinear.port_b.m_flow (min = -1e5, max = 1e60) (100) [DISC] (2) Boolean[2] $SEV_19[$i1] (101) [ALGB] (2) Real[2] V1.ports_H_flow (min = {-1e8 for $i1 in 1:2}, max = {1e8 for $i1 in 1:2}, nominal = {1000.0 for $i1 in 1:2}) (102) [ALGB] (1) Real valveLinear.dp (start = valveLinear.dp_start) (103) [ALGB] (1) protected Real valveLinear.state_a.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (104) [ALGB] (1) Real source.medium.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (105) [DER-] (1) Real $DER.V2.U (106) [ALGB] (2) Real[2] V2.portVelocities (107) [DISC] (2) protected Boolean[2] V1.regularFlow (start = {true for $i1 in 1:2}) (108) [ALGB] (1) Real sink.medium.state.T (start = 500.0, min = 200.0, max = 6000.0, nominal = 500.0) (109) [ALGB] (1) Real sink.medium.u (min = -1e8, max = 1e8, nominal = 1e6) (110) [ALGB] (2) Real[2] V1.ports_E_flow (111) [ALGB] (1) Real[1] sink.ports.p (start = {1e6 for $i1 in 1:1}, min = {0.0 for $i1 in 1:1}, max = {1e8 for $i1 in 1:1}, nominal = {1e6 for $i1 in 1:1}) (112) [ALGB] (1) Real V1.medium.state.p (start = 1e6, min = 0.0, max = 1e8, nominal = 1e6) (113) [ALGB] (2) Real[2] V2.s (start = {V2.fluidLevel_max for $i1 in 1:2}) (114) [ALGB] (1) Real V2.medium.d (start = 10.0, min = 0.0, max = 1e5, nominal = 10.0) (115) [ALGB] (1) final input Real[1, 1] V2.heatTransfer.states.T = {V2.medium.state.T} (start = {500.0 for $i1 in 1:1}, min = {200.0 for $i1 in 1:1}, max = {6000.0 for $i1 in 1:1}, nominal = {500.0 for $i1 in 1:1}) (116) [ALGB] (1) flow Real[1] sink.ports.m_flow (min = {-1e60}, max = {1e60}) (117) [DISC] (2) Boolean[2] $SEV_7[$i1] System Equations (121/151) **************************** (1) [SCAL] (1) 99999.99999999999 * sink.medium.p_bar = sink.state.p ($RES_SIM_15) (2) [FOR-] (2) ($RES_SIM_133) (2) [----] for $i1 in 1:2 loop (2) [----] [SCAL] (1) V1.ports[$i1].h_outflow = V1.medium.h ($RES_SIM_134) (2) [----] end for; (3) [SCAL] (1) $DER.V2.m = V2.mb_flow ($RES_SIM_51) (4) [SCAL] (1) $DER.V2.U = V2.Qb_flow + V2.Hb_flow ($RES_SIM_52) (5) [ARRY] (1) V1.heatTransfer.Ts = {V1.heatTransfer.states.p} ($RES_BND_182) (6) [FOR-] (2) ($RES_SIM_135) (6) [----] for $i1 in 1:2 loop (6) [----] [SCAL] (1) V1.ports_E_flow[$i1] = V1.ports[$i1].m_flow * (V1.portVelocities[$i1] * 0.5 * V1.portVelocities[$i1] + system.g * V1.portsData_height[$i1]) ($RES_SIM_136) (6) [----] end for; (7) [SCAL] (1) V2.U = V2.m * V2.medium.u ($RES_SIM_53) (8) [SCAL] (1) V1.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_170) (9) [SCAL] (1) V2.m = V2.V * V2.medium.d ($RES_SIM_54) (10) [SCAL] (1) V2.ports[1].m_flow + V1.ports[2].m_flow = 0.0 ($RES_SIM_171) (11) [SCAL] (1) V1.ports_H_flow[2] = smooth(0, V1.ports[2].m_flow * (if $SEV_24 then V2.ports[1].h_outflow else V1.ports[2].h_outflow)) ($RES_SIM_137) (12) [SCAL] (1) V2.Hb_flow = $FUN_5 + $FUN_6 ($RES_SIM_90) (13) [FOR-] (2) ($RES_SIM_55) (13) [----] for $i1 in 1:2 loop (13) [----] [SCAL] (1) V2.portVelocities[$i1] = 0.0 ($RES_SIM_56) (13) [----] end for; (14) [SCAL] (1) V1.portInDensities[2] = (0.0034836987724536205 * V1.vessel_ps_static[2]) / Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.V1.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(V2.ports[1].h_outflow)), 200.0, 6000.0, 1e-13) ($RES_SIM_138) (15) [SCAL] (1) valveLinear.port_b.p = sink.ports[1].p ($RES_SIM_173) (16) [SCAL] (1) sink.state.p = sink.p ($RES_SIM_211) (17) [SCAL] (1) V1.ports_H_flow[1] = smooth(0, V1.ports[1].m_flow * (if $SEV_25 then source.ports[1].h_outflow else V1.ports[1].h_outflow)) ($RES_SIM_139) (18) [FOR-] (2) ($RES_SIM_92) (18) [----] for $i1 in 1:2 loop (18) [----] [SCAL] (1) V2.vessel_ps_static[$i1] = 99999.99999999999 * V2.medium.p_bar ($RES_SIM_93) (18) [----] end for; (19) [SCAL] (1) V2.ports[2].p = valveLinear.port_a.p ($RES_SIM_174) (20) [SCAL] (1) sink.state.T = sink.T ($RES_SIM_212) (21) [SCAL] (1) V1.ports[2].p = V2.ports[1].p ($RES_SIM_175) (22) [SCAL] (1) valveLinear.state_a.p = valveLinear.port_a.p ($RES_SIM_213) (23) [SCAL] (1) V1.ports[1].m_flow + source.ports[1].m_flow = 0.0 ($RES_SIM_176) (24) [SCAL] (1) valveLinear.state_a.T = Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(V2.ports[2].h_outflow)), 200.0, 6000.0, 1e-13) ($RES_SIM_214) (25) [ARRY] (1) V2.heatTransfer.Q_flows = V2.heatTransfer.heatPorts.Q_flow ($RES_SIM_95) (26) [SCAL] (1) source.ports[1].p = V1.ports[1].p ($RES_SIM_177) (27) [SCAL] (1) valveLinear.state_b.p = valveLinear.port_b.p ($RES_SIM_215) (28) [ARRY] (1) V2.heatTransfer.Ts = V2.heatTransfer.heatPorts.T ($RES_SIM_96) (29) [SCAL] (1) valveLinear.state_b.T = Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(sink.ports[1].h_outflow)), 200.0, 6000.0, 1e-13) ($RES_SIM_216) (30) [FOR-] (2) ($RES_EVT_250) (30) [----] for $i1 in 1:2 loop (30) [----] [SCAL] (1) $SEV_20[$i1] = V1.s[$i1] > 0.0 ($RES_EVT_251) (30) [----] end for; (31) [FOR-] (2) ($RES_EVT_252) (31) [----] for $i1 in 1:2 loop (31) [----] [SCAL] (1) $SEV_21[$i1] = V1.portsData_height[$i1] >= V1.fluidLevel_max ($RES_EVT_253) (31) [----] end for; (32) [FOR-] (2) ($RES_EVT_254) (32) [----] for $i1 in 1:2 loop (32) [----] [SCAL] (1) $SEV_22[$i1] = $SEV_20[$i1] or $SEV_21[$i1] ($RES_EVT_255) (32) [----] end for; (33) [FOR-] (2) ($RES_EVT_256) (33) [----] for $i1 in 1:2 loop (33) [----] [SCAL] (1) $SEV_23[$i1] = not V1.regularFlow[$i1] and $SEV_22[$i1] ($RES_EVT_257) (33) [----] end for; (34) [SCAL] (1) V2.medium.state.p = 99999.99999999999 * V2.medium.p_bar ($RES_SIM_101) (35) [SCAL] (1) $SEV_24 = V1.ports[2].m_flow > 0.0 ($RES_EVT_258) (36) [SCAL] (1) V2.medium.state.T = -((-273.15) - V2.medium.T_degC) ($RES_SIM_102) (37) [SCAL] (1) $SEV_25 = V1.ports[1].m_flow > 0.0 ($RES_EVT_259) (38) [SCAL] (1) V2.medium.d = -(0.0034836987724536205 * (99999.99999999999 * V2.medium.p_bar)) / ((-273.15) - V2.medium.T_degC) ($RES_SIM_103) (39) [SCAL] (1) V2.medium.u = 287.0512249529787 * ((-273.15) - V2.medium.T_degC) + V2.medium.h ($RES_SIM_104) (40) [SCAL] (1) sink.medium.state.p = 99999.99999999999 * sink.medium.p_bar ($RES_SIM_22) (41) [SCAL] (1) V1.mb_flow = sum(V1.ports.m_flow) ($RES_$AUX_210) (42) [SCAL] (1) V1.portInDensities[1] = (0.0034836987724536205 * V1.vessel_ps_static[1]) / Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.V1.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(source.ports[1].h_outflow)), 200.0, 6000.0, 1e-13) ($RES_SIM_140) (43) [SCAL] (1) V2.medium.h = Modelica.Media.IdealGases.Common.Functions.h_T(Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), -((-273.15) - V2.medium.T_degC), true, Modelica.Media.Interfaces.Choices.ReferenceEnthalpy.ZeroAt0K, 0.0) ($RES_SIM_105) (44) [SCAL] (1) sink.medium.state.T = -((-273.15) - sink.medium.T_degC) ($RES_SIM_23) (45) [SCAL] (1) sink.medium.d = -(0.0034836987724536205 * (99999.99999999999 * sink.medium.p_bar)) / ((-273.15) - sink.medium.T_degC) ($RES_SIM_24) (46) [SCAL] (1) sink.medium.u = 287.0512249529787 * ((-273.15) - sink.medium.T_degC) + sink.medium.h ($RES_SIM_25) (47) [ARRY] (1) V2.heatTransfer.Ts = {V2.heatTransfer.states.p} ($RES_BND_190) (48) [FOR-] (2) ($RES_SIM_61) (48) [----] for $i1 in 1:2 loop (48) [----] [SCAL] (1) V2.regularFlow[$i1] = $SEV_7[$i1] ($RES_SIM_62) (48) [----] end for; (49) [ARRY] (2) V1.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_143) (50) [SCAL] (1) sink.medium.h = Modelica.Media.IdealGases.Common.Functions.h_T(Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), -((-273.15) - sink.medium.T_degC), true, Modelica.Media.Interfaces.Choices.ReferenceEnthalpy.ZeroAt0K, 0.0) ($RES_SIM_26) (51) [SCAL] (1) $DER.V1.m = V1.mb_flow ($RES_SIM_109) (52) [FOR-] (2) ($RES_SIM_63) (52) [----] for $i1 in 1:2 loop (52) [----] [SCAL] (1) V2.inFlow[$i1] = $SEV_11[$i1] ($RES_SIM_64) (52) [----] end for; (53) [FOR-] (2) ($RES_SIM_65) (53) [----] for $i1 in 1:2 loop (53) [----] [-IF-] (1)if V2.regularFlow[$i1] then (53) [----] [----] [SCAL] (1) V2.ports[$i1].p = V2.vessel_ps_static[$i1] ($RES_SIM_67) (53) [----] [----] elseif V2.inFlow[$i1] then (53) [----] [----] [SCAL] (1) V2.ports[$i1].p = V2.vessel_ps_static[$i1] ($RES_SIM_68) (53) [----] [----] else (53) [----] [----] [SCAL] (1) V2.ports[$i1].m_flow = 0.0 ($RES_SIM_69) (53) [----] [----] end if; (53) [----] end for; (54) [SCAL] (1) V1.Qb_flow = V1.heatTransfer.Q_flows[1] ($RES_SIM_147) (55) [SCAL] (1) V1.Hb_flow = $FUN_2 + $FUN_3 ($RES_SIM_148) (56) [SCAL] (1) valveLinear.V_flow = -valveLinear.port_b.m_flow / smooth(1, if $SEV_34 then (0.0034836987724536205 * valveLinear.state_a.p) / valveLinear.state_a.T else if $SEV_35 then (0.0034836987724536205 * valveLinear.state_b.p) / valveLinear.state_b.T else if $SEV_33 then 0.5 * ((0.0034836987724536205 * valveLinear.state_a.p) / valveLinear.state_a.T + (0.0034836987724536205 * valveLinear.state_b.p) / valveLinear.state_b.T) - 0.25 * ((0.0034836987724536205 * valveLinear.state_b.p) / valveLinear.state_b.T - (0.0034836987724536205 * valveLinear.state_a.p) / valveLinear.state_a.T) * ((-3.0) + (valveLinear.port_b.m_flow / (-valveLinear.m_flow_small)) ^ 2.0) * (valveLinear.port_b.m_flow / valveLinear.m_flow_small) else 0.5 * ((0.0034836987724536205 * valveLinear.state_a.p) / valveLinear.state_a.T + (0.0034836987724536205 * valveLinear.state_b.p) / valveLinear.state_b.T)) ($RES_BND_198) (57) [SCAL] (1) valveLinear.port_a_T = smooth(1, if $SEV_34 then valveLinear.state_a.T else if $SEV_35 then Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_a.h_outflow)), 200.0, 6000.0, 1e-13) else if $SEV_33 then 0.5 * (valveLinear.state_a.T + Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_a.h_outflow)), 200.0, 6000.0, 1e-13)) - 0.25 * (Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_a.h_outflow)), 200.0, 6000.0, 1e-13) - valveLinear.state_a.T) * ((-3.0) + (valveLinear.port_b.m_flow / (-valveLinear.m_flow_small)) ^ 2.0) * (valveLinear.port_b.m_flow / valveLinear.m_flow_small) else 0.5 * (valveLinear.state_a.T + Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_a.h_outflow)), 200.0, 6000.0, 1e-13))) ($RES_BND_199) (58) [SCAL] (1) $FUN_2 = sum(V1.ports_H_flow) ($RES_$AUX_209) (59) [SCAL] (1) $SEV_3 = abs(sum({abs(source.ports[1].m_flow)}) - abs(source.ports[1].m_flow)) <= 1e-60 ($RES_EVT_227) (60) [SCAL] (1) $FUN_3 = sum(V1.ports_E_flow) ($RES_$AUX_208) (61) [SCAL] (1) V2.mb_flow = sum(V2.ports.m_flow) ($RES_$AUX_207) (62) [SCAL] (1) $FUN_5 = sum(V2.ports_H_flow) ($RES_$AUX_206) (63) [SCAL] (1) $SEV_31 = valveLinear.port_b.m_flow > valveLinear.m_flow_small ($RES_EVT_265) (64) [SCAL] (1) $FUN_6 = sum(V2.ports_E_flow) ($RES_$AUX_205) (65) [SCAL] (1) $SEV_32 = valveLinear.port_b.m_flow < (-valveLinear.m_flow_small) ($RES_EVT_266) (66) [SCAL] (1) $DER.V1.U = V1.Qb_flow + V1.Hb_flow ($RES_SIM_110) (67) [SCAL] (1) -source.m_flow = sum(source.ports.m_flow) ($RES_$AUX_204) (68) [SCAL] (1) $SEV_33 = valveLinear.m_flow_small > 0.0 ($RES_EVT_267) (69) [SCAL] (1) V1.U = V1.m * V1.medium.u ($RES_SIM_111) (70) [SCAL] (1) $SEV_34 = (-valveLinear.port_b.m_flow) > valveLinear.m_flow_small ($RES_EVT_268) (71) [SCAL] (1) V1.m = V1.V * V1.medium.d ($RES_SIM_112) (72) [SCAL] (1) source.ports[1].p = 99999.99999999999 * source.medium.p_bar ($RES_SIM_30) (73) [SCAL] (1) $SEV_35 = (-valveLinear.port_b.m_flow) < (-valveLinear.m_flow_small) ($RES_EVT_269) (74) [FOR-] (2) ($RES_SIM_113) (74) [----] for $i1 in 1:2 loop (74) [----] [SCAL] (1) V1.portVelocities[$i1] = 0.0 ($RES_SIM_114) (74) [----] end for; (75) [SCAL] (1) source.ports[1].h_outflow = source.medium.h ($RES_SIM_31) (76) [SCAL] (1) valveLinear.port_b_T = smooth(1, if $SEV_31 then valveLinear.state_b.T else if $SEV_32 then Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_b.h_outflow)), 200.0, 6000.0, 1e-13) else if $SEV_33 then 0.25 * (Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_b.h_outflow)), 200.0, 6000.0, 1e-13) - valveLinear.state_b.T) * ((-3.0) + (valveLinear.port_b.m_flow / valveLinear.m_flow_small) ^ 2.0) * (valveLinear.port_b.m_flow / valveLinear.m_flow_small) + 0.5 * (valveLinear.state_b.T + Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_b.h_outflow)), 200.0, 6000.0, 1e-13)) else 0.5 * (valveLinear.state_b.T + Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.valveLinear.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_b.h_outflow)), 200.0, 6000.0, 1e-13))) ($RES_BND_200) (77) [FOR-] (2) ($RES_SIM_150) (77) [----] for $i1 in 1:2 loop (77) [----] [SCAL] (1) V1.vessel_ps_static[$i1] = 99999.99999999999 * V1.medium.p_bar ($RES_SIM_151) (77) [----] end for; (78) [ARRY] (2) V1.heatTransfer.states = {V1.medium.state} ($RES_BND_202) (79) [FOR-] (2) ($RES_SIM_70) (79) [----] for $i1 in 1:2 loop (79) [----] [-IF-] (1)if V2.regularFlow[$i1] then (79) [----] [----] [SCAL] (1) V2.s[$i1] = 0.0 - V2.portsData_height[$i1] ($RES_SIM_72) (79) [----] [----] elseif V2.inFlow[$i1] then (79) [----] [----] [SCAL] (1) V2.s[$i1] = V2.ports[$i1].m_flow ($RES_SIM_73) (79) [----] [----] else (79) [----] [----] [SCAL] (1) V2.s[$i1] = ((V2.ports[$i1].p - V2.vessel_ps_static[$i1]) / 101325.0) * (V2.portsData_height[$i1] - 0.0) ($RES_SIM_74) (79) [----] [----] end if; (79) [----] end for; (80) [ARRY] (2) V2.heatTransfer.states = {V2.medium.state} ($RES_BND_203) (81) [ARRY] (1) V1.heatTransfer.Q_flows = V1.heatTransfer.heatPorts.Q_flow ($RES_SIM_153) (82) [ARRY] (1) V1.heatTransfer.Ts = V1.heatTransfer.heatPorts.T ($RES_SIM_154) (83) [FOR-] (2) ($RES_SIM_119) (83) [----] for $i1 in 1:2 loop (83) [----] [SCAL] (1) V1.regularFlow[$i1] = $SEV_19[$i1] ($RES_SIM_120) (83) [----] end for; (84) [FOR-] (2) ($RES_SIM_75) (84) [----] for $i1 in 1:2 loop (84) [----] [SCAL] (1) V2.ports[$i1].h_outflow = V2.medium.h ($RES_SIM_76) (84) [----] end for; (85) [FOR-] (2) ($RES_SIM_77) (85) [----] for $i1 in 1:2 loop (85) [----] [SCAL] (1) V2.ports_E_flow[$i1] = V2.ports[$i1].m_flow * (V2.portVelocities[$i1] * 0.5 * V2.portVelocities[$i1] + system.g * V2.portsData_height[$i1]) ($RES_SIM_78) (85) [----] end for; (86) [SCAL] (1) V1.medium.state.p = 99999.99999999999 * V1.medium.p_bar ($RES_SIM_159) (87) [SCAL] (1) V2.ports_H_flow[2] = smooth(0, V2.ports[2].m_flow * (if $SEV_12 then valveLinear.port_a.h_outflow else V2.ports[2].h_outflow)) ($RES_SIM_79) (88) [FOR-] (2) ($RES_EVT_231) (88) [----] for $i1 in 1:2 loop (88) [----] [SCAL] (1) $SEV_7[$i1] = 0.0 >= V2.portsData_height[$i1] ($RES_EVT_232) (88) [----] end for; (89) [FOR-] (2) ($RES_EVT_233) (89) [----] for $i1 in 1:2 loop (89) [----] [SCAL] (1) $SEV_8[$i1] = V2.s[$i1] > 0.0 ($RES_EVT_234) (89) [----] end for; (90) [FOR-] (2) ($RES_EVT_235) (90) [----] for $i1 in 1:2 loop (90) [----] [SCAL] (1) $SEV_9[$i1] = V2.portsData_height[$i1] >= V2.fluidLevel_max ($RES_EVT_236) (90) [----] end for; (91) [FOR-] (2) ($RES_EVT_237) (91) [----] for $i1 in 1:2 loop (91) [----] [SCAL] (1) $SEV_10[$i1] = $SEV_8[$i1] or $SEV_9[$i1] ($RES_EVT_238) (91) [----] end for; (92) [FOR-] (2) ($RES_EVT_239) (92) [----] for $i1 in 1:2 loop (92) [----] [SCAL] (1) $SEV_11[$i1] = not V2.regularFlow[$i1] and $SEV_10[$i1] ($RES_EVT_240) (92) [----] end for; (93) [FOR-] (2) ($RES_SIM_121) (93) [----] for $i1 in 1:2 loop (93) [----] [SCAL] (1) V1.inFlow[$i1] = $SEV_23[$i1] ($RES_SIM_122) (93) [----] end for; (94) [FOR-] (2) ($RES_SIM_123) (94) [----] for $i1 in 1:2 loop (94) [----] [-IF-] (1)if V1.regularFlow[$i1] then (94) [----] [----] [SCAL] (1) V1.ports[$i1].p = V1.vessel_ps_static[$i1] ($RES_SIM_125) (94) [----] [----] elseif V1.inFlow[$i1] then (94) [----] [----] [SCAL] (1) V1.ports[$i1].p = V1.vessel_ps_static[$i1] ($RES_SIM_126) (94) [----] [----] else (94) [----] [----] [SCAL] (1) V1.ports[$i1].m_flow = 0.0 ($RES_SIM_127) (94) [----] [----] end if; (94) [----] end for; (95) [SCAL] (1) V1.medium.state.T = -((-273.15) - V1.medium.T_degC) ($RES_SIM_160) (96) [SCAL] (1) source.medium.state.p = 99999.99999999999 * source.medium.p_bar ($RES_SIM_43) (97) [SCAL] (1) V1.medium.d = -(0.0034836987724536205 * (99999.99999999999 * V1.medium.p_bar)) / ((-273.15) - V1.medium.T_degC) ($RES_SIM_161) (98) [SCAL] (1) V2.portInDensities[2] = (0.0034836987724536205 * V2.vessel_ps_static[2]) / Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.V2.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(valveLinear.port_a.h_outflow)), 200.0, 6000.0, 1e-13) ($RES_SIM_80) (99) [SCAL] (1) V1.medium.u = 287.0512249529787 * ((-273.15) - V1.medium.T_degC) + V1.medium.h ($RES_SIM_162) (100) [SCAL] (1) source.medium.d = (0.0034836987724536205 * (99999.99999999999 * source.medium.p_bar)) / source.T ($RES_SIM_45) (101) [SCAL] (1) V2.ports_H_flow[1] = smooth(0, V2.ports[1].m_flow * (if $SEV_13 then V1.ports[2].h_outflow else V2.ports[1].h_outflow)) ($RES_SIM_81) (102) [SCAL] (1) V1.medium.h = Modelica.Media.IdealGases.Common.Functions.h_T(Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), -((-273.15) - V1.medium.T_degC), true, Modelica.Media.Interfaces.Choices.ReferenceEnthalpy.ZeroAt0K, 0.0) ($RES_SIM_163) (103) [FOR-] (2) ($RES_SIM_128) (103) [----] for $i1 in 1:2 loop (103) [----] [-IF-] (1)if V1.regularFlow[$i1] then (103) [----] [----] [SCAL] (1) V1.s[$i1] = 0.0 - V1.portsData_height[$i1] ($RES_SIM_130) (103) [----] [----] elseif V1.inFlow[$i1] then (103) [----] [----] [SCAL] (1) V1.s[$i1] = V1.ports[$i1].m_flow ($RES_SIM_131) (103) [----] [----] else (103) [----] [----] [SCAL] (1) V1.s[$i1] = ((V1.ports[$i1].p - V1.vessel_ps_static[$i1]) / 101325.0) * (V1.portsData_height[$i1] - 0.0) ($RES_SIM_132) (103) [----] [----] end if; (103) [----] end for; (104) [SCAL] (1) source.medium.u = source.medium.h - 287.0512249529787 * source.T ($RES_SIM_46) (105) [SCAL] (1) V2.portInDensities[1] = (0.0034836987724536205 * V2.vessel_ps_static[1]) / Modelica.Math.Nonlinear.solveOneNonlinearEquation(function ModelicaTestOverdetermined.ConsistentInitialization.Fluid.TwoVolumesFullSteadyStatePressureAndTemperature.V2.Medium.T_h.f_nonlinear(data = Modelica.Media.IdealGases.Common.DataRecord("Air", BOX(0.0289651159), BOX(-4333.833858403446), BOX(298609.6803431054), BOX(1000.0), BOX({10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}), BOX({-176.796731, -3.921504225}), BOX({241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}), BOX({6462.26319, -8.147411905}), BOX(287.0512249529787)), h = BOX(V1.ports[2].h_outflow)), 200.0, 6000.0, 1e-13) ($RES_SIM_82) (106) [SCAL] (1) source.medium.h = Modelica.Media.IdealGases.Common.Functions.h_T(Modelica.Media.IdealGases.Common.DataRecord("Air", 0.0289651159, -4333.833858403446, 298609.6803431054, 1000.0, {10099.5016, -196.827561, 5.00915511, -0.00576101373, 1.06685993e-5, -7.94029797e-9, 2.18523191e-12}, {-176.796731, -3.921504225}, {241521.443, -1257.8746, 5.14455867, -2.13854179e-4, 7.06522784e-8, -1.07148349e-11, 6.57780015e-16}, {6462.26319, -8.147411905}, 287.0512249529787), source.T, true, Modelica.Media.Interfaces.Choices.ReferenceEnthalpy.ZeroAt0K, 0.0) ($RES_SIM_47) (107) [ARRY] (2) V2.portsData_height = {0.0 for $i1 in 1:2} ($RES_SIM_85) (108) [SCAL] (1) valveLinear.port_b.m_flow + sink.ports[1].m_flow = 0.0 ($RES_SIM_167) (109) [SCAL] (1) V2.heatTransfer.heatPorts[1].Q_flow = 0.0 ($RES_SIM_168) (110) [SCAL] (1) V2.ports[2].m_flow - valveLinear.port_b.m_flow = 0.0 ($RES_SIM_169) (111) [SCAL] (1) V2.Qb_flow = V2.heatTransfer.Q_flows[1] ($RES_SIM_89) (112) [SCAL] (1) valveLinear.port_b.h_outflow = V2.ports[2].h_outflow ($RES_SIM_9) (113) [SCAL] (1) $SEV_12 = V2.ports[2].m_flow > 0.0 ($RES_EVT_241) (114) [SCAL] (1) valveLinear.dp = valveLinear.port_a.p - valveLinear.port_b.p ($RES_SIM_6) (115) [SCAL] (1) $SEV_13 = V2.ports[1].m_flow > 0.0 ($RES_EVT_242) (116) [FOR-] (2) ($RES_EVT_248) (116) [----] for $i1 in 1:2 loop (116) [----] [SCAL] (1) $SEV_19[$i1] = 0.0 >= V1.portsData_height[$i1] ($RES_EVT_249) (116) [----] end for; (117) [SCAL] (1) valveLinear.port_a.h_outflow = sink.ports[1].h_outflow ($RES_SIM_10) (118) [SCAL] (1) -valveLinear.port_b.m_flow = valveLinear.k * valveLinear.dp ($RES_SIM_11) (119) [SCAL] (1) sink.ports[1].p = 99999.99999999999 * sink.medium.p_bar ($RES_SIM_12) (120) [SCAL] (1) sink.ports[1].h_outflow = sink.medium.h ($RES_SIM_13) (121) [SCAL] (1) -((-273.15) - sink.medium.T_degC) = sink.state.T ($RES_SIM_14)