Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries/ --ompython_omhome=/usr Buildings_8_Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Buildings 8.1.4-maint.8.1.x/package.mo", uses=false) Using package Buildings with version 8.1.4 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Buildings 8.1.4-maint.8.1.x/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Buildings_8_Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases") translateModel(Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Buildings_8_Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001069/0.001069, allocations: 104.7 kB / 16.38 MB, free: 6.492 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001156/0.001157, allocations: 190.5 kB / 17.31 MB, free: 5.812 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.334/1.334, allocations: 205.1 MB / 223.2 MB, free: 12.25 MB / 190.1 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Buildings 8.1.4-maint.8.1.x/package.mo): time 1.708/1.708, allocations: 292.3 MB / 0.5496 GB, free: 17.44 MB / 462.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.737e-05/2.738e-05, allocations: 2.281 kB / 0.6729 GB, free: 5.867 MB / 0.545 GB Notification: Performance of NFInst.instantiate(Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases): time 0.0122/0.01225, allocations: 11.06 MB / 0.6837 GB, free: 10.77 MB / 0.5606 GB Notification: Performance of NFInst.instExpressions: time 0.008225/0.02051, allocations: 5.84 MB / 0.6894 GB, free: 4.902 MB / 0.5606 GB Notification: Performance of NFInst.updateImplicitVariability: time 0.001121/0.02166, allocations: 51.69 kB / 0.6894 GB, free: 4.852 MB / 0.5606 GB Notification: Performance of NFTyping.typeComponents: time 0.004006/0.02568, allocations: 1.721 MB / 0.6911 GB, free: 3.129 MB / 0.5606 GB Notification: Performance of NFTyping.typeBindings: time 0.003522/0.02921, allocations: 1.151 MB / 0.6922 GB, free: 1.973 MB / 0.5606 GB Notification: Performance of NFTyping.typeClassSections: time 0.002406/0.03168, allocations: 0.8099 MB / 0.693 GB, free: 1.164 MB / 0.5606 GB Notification: Performance of NFFlatten.flatten: time 0.003725/0.03542, allocations: 2.357 MB / 0.6953 GB, free: 14.8 MB / 0.5762 GB Notification: Performance of NFFlatten.resolveConnections: time 0.001734/0.03717, allocations: 1.012 MB / 0.6963 GB, free: 13.76 MB / 0.5762 GB Notification: Performance of NFEvalConstants.evaluate: time 0.001507/0.03869, allocations: 0.8248 MB / 0.6971 GB, free: 12.93 MB / 0.5762 GB Notification: Performance of NFSimplifyModel.simplify: time 0.001059/0.03976, allocations: 0.7348 MB / 0.6978 GB, free: 12.2 MB / 0.5762 GB Notification: Performance of NFPackage.collectConstants: time 0.0001355/0.0399, allocations: 92 kB / 0.6979 GB, free: 12.11 MB / 0.5762 GB Notification: Performance of NFFlatten.collectFunctions: time 0.002867/0.04278, allocations: 1.029 MB / 0.6989 GB, free: 11.07 MB / 0.5762 GB Notification: Performance of combineBinaries: time 0.002164/0.04496, allocations: 2.404 MB / 0.7013 GB, free: 8.645 MB / 0.5762 GB Notification: Performance of replaceArrayConstructors: time 0.001409/0.04638, allocations: 1.598 MB / 0.7028 GB, free: 7.031 MB / 0.5762 GB Notification: Performance of NFVerifyModel.verify: time 0.0004015/0.04679, allocations: 231.2 kB / 0.703 GB, free: 6.805 MB / 0.5762 GB Notification: Performance of FrontEnd: time 0.0002479/0.04704, allocations: 39.81 kB / 0.7031 GB, free: 6.766 MB / 0.5762 GB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 369 (271) * Number of variables: 369 (268) Notification: Performance of Bindings: time 0.005902/0.05295, allocations: 6.42 MB / 0.7093 GB, free: 96 kB / 0.5762 GB Notification: Performance of FunctionAlias: time 0.0005278/0.05349, allocations: 0.5287 MB / 0.7099 GB, free: 15.54 MB / 0.5919 GB Notification: Performance of Early Inline: time 0.004903/0.0584, allocations: 4.601 MB / 0.7144 GB, free: 10.87 MB / 0.5919 GB Notification: Performance of simplify1: time 0.0004862/0.05891, allocations: 327.5 kB / 0.7147 GB, free: 10.55 MB / 0.5919 GB Notification: Performance of Alias: time 0.005617/0.06453, allocations: 4.669 MB / 0.7192 GB, free: 5.105 MB / 0.5919 GB Notification: Performance of simplify2: time 0.0004585/0.06502, allocations: 295.6 kB / 0.7195 GB, free: 4.816 MB / 0.5919 GB Notification: Performance of Events: time 0.000478/0.0655, allocations: 493.3 kB / 0.72 GB, free: 4.332 MB / 0.5919 GB Notification: Performance of Detect States: time 0.0008582/0.06637, allocations: 0.8777 MB / 0.7208 GB, free: 3.43 MB / 0.5919 GB Notification: Performance of Partitioning: time 0.001609/0.06799, allocations: 1.273 MB / 0.7221 GB, free: 2.074 MB / 0.5919 GB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency RL_b.v[1] could not be devided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) RL_b.S = {RL_b.v[1] * (-RL_b.i)[1] + RL_b.v[2] * (-RL_b.i)[2], RL_b.v[2] * (-RL_b.i)[1] - RL_b.v[1] * (-RL_b.i)[2]} ($RES_BND_255) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (181/282) **************************** (1) [ALGB] (2) Real[2] sen_Y.terminal_n.v (2) [ALGB] (2) Real[2] sen_a.terminal_n.v (3) [ALGB] (1) Real[1] sen_ca.terminal_p.theta (4) [ALGB] (2) flow Real[2] sen_b.terminal_n.i (start = {0.0 for $i1 in 1:2}) (5) [ALGB] (2) flow Real[2] sen_c.terminal_n.i (start = {0.0 for $i1 in 1:2}) (6) [ALGB] (1) protected Real RL_b.X (start = 1.0) (7) [ALGB] (2) flow Real[2] sou_b.terminal.i (start = {0.0 for $i1 in 1:2}) (8) [ALGB] (1) Real sen_D.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_D.terminal_n.v) (9) [ALGB] (2) Real[2] sou_ca.terminal.v (10) [ALGB] (2) Real[2] RL_b.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_b.PhaseSystem.phasePowers_vi(RL_b.v, -RL_b.i) (11) [ALGB] (2) Real[2] sen_D.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_D.terminal_n.v, sen_D.terminal_n.i) (12) [ALGB] (1) Real sen_Y.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_Y.terminal_n.v) (13) [ALGB] (2) Real[2] sen_Y.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_Y.terminal_n.v, sen_Y.terminal_n.i) (14) [ALGB] (2) Real[2] sen_bc.terminal_p.v (15) [ALGB] (1) Real[1] sen_D.terminal_p.theta (16) [ALGB] (2) Real[2] sou_b.terminal.v (17) [ALGB] (1) Real sen_D.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_D.terminal_n.i) (18) [ALGB] (2) flow Real[2] sou_ca.terminal.i (start = {0.0 for $i1 in 1:2}) (19) [ALGB] (1) Real sen_Y.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_Y.terminal_n.i) (20) [ALGB] (1) Real[1] RL_bc.terminal.theta (21) [ALGB] (1) Real[1] RL_b.terminal.theta (22) [ALGB] (1) Real errorY = sqrt((sen_Y.S[2] - (sen_c.S[2] + sen_a.S[2] + sen_b.S[2])) ^ 2.0 + (sen_Y.S[1] - (sen_c.S[1] + sen_a.S[1] + sen_b.S[1])) ^ 2.0) (23) [ALGB] (2) flow Real[2] sen_bc.terminal_p.i (start = {0.0 for $i1 in 1:2}) (24) [ALGB] (1) Real[1] sen_c.terminal_n.theta (25) [DER-] (1) Real $DER.RL_c.theRef (26) [ALGB] (2) Real[2] RL_a.v = RL_a.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_a.PhaseSystem.phaseVoltages(RL_a.V_nominal, 0.0)) (27) [ALGB] (1) Real[1] RL_tri.terminal.theta (28) [ALGB] (1) Real sen_a.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_a.terminal_n.v) (29) [ALGB] (2) Real[2] sen_a.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_a.terminal_n.v, sen_a.terminal_n.i) (30) [DER-] (1) Real $DER.RL_tri.theRef (31) [ALGB] (1) Real errorD = sqrt((sen_D.S[2] - (sen_ca.S[2] + sen_ab.S[2] + sen_bc.S[2])) ^ 2.0 + (sen_D.S[1] - (sen_ca.S[1] + sen_ab.S[1] + sen_bc.S[1])) ^ 2.0) (32) [ALGB] (2) Real[2] RL_a.i = RL_a.terminal.i (start = {0.0 for $i1 in 1:2}) (33) [ALGB] (2) Real[2] RL_b.terminal.v (34) [ALGB] (1) Real sen_a.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_a.terminal_n.i) (35) [ALGB] (1) protected Real RL_bc.omega (36) [ALGB] (2) Real[2] sou.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou.PhaseSystem.phasePowers_vi(sou.terminal.v, sou.terminal.i) (37) [ALGB] (1) Real[1] sou_b.terminal.theta (38) [ALGB] (2) flow Real[2] RL_b.terminal.i (start = {0.0 for $i1 in 1:2}) (39) [ALGB] (1) protected Real RL_c.omega (40) [ALGB] (1) protected Real RL_a.X (start = 1.0) (41) [ALGB] (2) Real[2] sou_bc.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_bc.PhaseSystem.phasePowers_vi(sou_bc.terminal.v, sou_bc.terminal.i) (42) [ALGB] (2) Real[2] RL_a.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_a.PhaseSystem.phasePowers_vi(RL_a.v, -RL_a.i) (43) [ALGB] (2) Real[2] RL_ab.terminal.v (44) [ALGB] (1) Real[1] RL_a.terminal.theta (45) [ALGB] (1) Real[1] sou_c.terminal.theta (46) [DER-] (1) Real $DER.RL_a.theRef (47) [ALGB] (2) Real[2] sou_ab.terminal.v (48) [DER-] (1) Real $DER.RL_star.theRef (49) [ALGB] (2) flow Real[2] RL_ab.terminal.i (start = {0.0 for $i1 in 1:2}) (50) [ALGB] (2) flow Real[2] sou_a.terminal.i (start = {0.0 for $i1 in 1:2}) (51) [ALGB] (2) flow Real[2] sou.terminal.i (start = {0.0 for $i1 in 1:2}) (52) [ALGB] (2) Real[2] sou_ab.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ab.PhaseSystem.phasePowers_vi(sou_ab.terminal.v, sou_ab.terminal.i) (53) [ALGB] (2) flow Real[2] sou_ab.terminal.i (start = {0.0 for $i1 in 1:2}) (54) [ALGB] (2) flow Real[2] sen_ab.terminal_p.i (start = {0.0 for $i1 in 1:2}) (55) [ALGB] (1) Real[1] sen_a.terminal_n.theta (56) [ALGB] (2) flow Real[2] sen_ca.terminal_p.i (start = {0.0 for $i1 in 1:2}) (57) [ALGB] (2) Real[2] RL_bc.terminal.v (58) [ALGB] (2) Real[2] sou_bc.terminal.v (59) [ALGB] (2) Real[2] sou_a.terminal.v (60) [ALGB] (2) Real[2] sou.terminal.v (61) [ALGB] (1) Real[1] sen_ca.terminal_n.theta (62) [ALGB] (2) Real[2] sou_c.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_c.PhaseSystem.phasePowers_vi(sou_c.terminal.v, sou_c.terminal.i) (63) [ALGB] (2) Real[2] sen_ab.terminal_p.v (64) [ALGB] (1) Real sen_ca.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_ca.terminal_n.v) (65) [ALGB] (2) Real[2] sen_ca.terminal_p.v (66) [ALGB] (2) flow Real[2] RL_bc.terminal.i (start = {0.0 for $i1 in 1:2}) (67) [ALGB] (2) Real[2] sen_ca.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_ca.terminal_n.v, sen_ca.terminal_n.i) (68) [ALGB] (2) flow Real[2] sen_Y.terminal_p.i (start = {0.0 for $i1 in 1:2}) (69) [ALGB] (2) flow Real[2] sen_a.terminal_p.i (start = {0.0 for $i1 in 1:2}) (70) [ALGB] (1) Real[1] RL_star.terminal.theta (71) [ALGB] (2) flow Real[2] sou_bc.terminal.i (start = {0.0 for $i1 in 1:2}) (72) [ALGB] (1) protected Real RL_b.omega (73) [ALGB] (2) flow Real[2] sen_D.terminal_n.i (start = {0.0 for $i1 in 1:2}) (74) [ALGB] (1) Real sou_a.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_a.PhaseSystem.phase(sou_a.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_a.PhaseSystem.phase(-sou_a.terminal.i) (75) [ALGB] (1) Real[1] sen_b.terminal_p.theta (76) [ALGB] (1) Real sen_ca.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_ca.terminal_n.i) (77) [ALGB] (1) Real[1] sen_bc.terminal_p.theta (78) [ALGB] (1) Real[1] sen_ab.terminal_p.theta (79) [ALGB] (2) Real[2] sen_Y.terminal_p.v (80) [ALGB] (2) Real[2] sen_a.terminal_p.v (81) [ALGB] (2) Real[2] RL_tri.v = RL_tri.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_tri.PhaseSystem.phaseVoltages(RL_tri.V_nominal, 0.0)) (82) [ALGB] (1) Real[1] sen_Y.terminal_n.theta (83) [ALGB] (2) Real[2] sen_b.terminal_p.v (84) [ALGB] (2) Real[2] sen_c.terminal_p.v (85) [ALGB] (2) Real[2] RL_bc.v = RL_bc.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_bc.PhaseSystem.phaseVoltages(RL_bc.V_nominal, 0.0)) (86) [ALGB] (1) Real sou_c.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_c.PhaseSystem.phase(sou_c.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_c.PhaseSystem.phase(-sou_c.terminal.i) (87) [ALGB] (2) Real[2] sen_D.terminal_n.v (88) [ALGB] (2) Real[2] RL_c.terminal.v (89) [ALGB] (1) Real[1] sen_c.terminal_p.theta (90) [ALGB] (2) Real[2] RL_c1.v = RL_c1.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c1.PhaseSystem.phaseVoltages(RL_c1.V_nominal, 0.0)) (91) [ALGB] (2) Real[2] RL_tri.i = RL_tri.terminal.i (start = {0.0 for $i1 in 1:2}) (92) [ALGB] (2) Real[2] sen_bc.terminal_n.v (93) [ALGB] (2) flow Real[2] sen_b.terminal_p.i (start = {0.0 for $i1 in 1:2}) (94) [ALGB] (2) flow Real[2] sen_c.terminal_p.i (start = {0.0 for $i1 in 1:2}) (95) [ALGB] (2) Real[2] RL_bc.i = RL_bc.terminal.i (start = {0.0 for $i1 in 1:2}) (96) [ALGB] (2) flow Real[2] RL_c.terminal.i (start = {0.0 for $i1 in 1:2}) (97) [ALGB] (2) Real[2] RL_ab.v = RL_ab.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_ab.PhaseSystem.phaseVoltages(RL_ab.V_nominal, 0.0)) (98) [ALGB] (2) Real[2] RL_star.v = RL_star.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_star.PhaseSystem.phaseVoltages(RL_star.V_nominal, 0.0)) (99) [ALGB] (2) Real[2] RL_c1.terminal.v (100) [ALGB] (2) Real[2] RL_c1.i = RL_c1.terminal.i (start = {0.0 for $i1 in 1:2}) (101) [ALGB] (1) Real sou.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou.PhaseSystem.phase(sou.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou.PhaseSystem.phase(-sou.terminal.i) (102) [ALGB] (2) flow Real[2] sen_bc.terminal_n.i (start = {0.0 for $i1 in 1:2}) (103) [ALGB] (1) protected Real RL_tri.X (start = 1.0) (104) [ALGB] (1) Real[1] sou_ab.terminal.theta (105) [ALGB] (1) protected Real RL_ab.omega (106) [ALGB] (1) protected Real RL_bc.X (start = 1.0) (107) [ALGB] (2) Real[2] RL_ab.i = RL_ab.terminal.i (start = {0.0 for $i1 in 1:2}) (108) [ALGB] (2) Real[2] RL_star.i = RL_star.terminal.i (start = {0.0 for $i1 in 1:2}) (109) [ALGB] (2) Real[2] RL_tri.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_tri.PhaseSystem.phasePowers_vi(RL_tri.v, -RL_tri.i) (110) [ALGB] (2) flow Real[2] RL_star.terminal.i (start = {0.0 for $i1 in 1:2}) (111) [DER-] (1) Real $DER.RL_bc.theRef (112) [ALGB] (1) Real[1] sou_ca.terminal.theta (113) [ALGB] (2) flow Real[2] RL_c1.terminal.i (start = {0.0 for $i1 in 1:2}) (114) [ALGB] (2) Real[2] RL_bc.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_bc.PhaseSystem.phasePowers_vi(RL_bc.v, -RL_bc.i) (115) [ALGB] (2) Real[2] sou_b.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_b.PhaseSystem.phasePowers_vi(sou_b.terminal.v, sou_b.terminal.i) (116) [ALGB] (1) protected Real RL_a.omega (117) [ALGB] (1) Real sou_bc.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_bc.PhaseSystem.phase(sou_bc.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_bc.PhaseSystem.phase(-sou_bc.terminal.i) (118) [ALGB] (1) protected Real RL_c1.X (start = 1.0) (119) [ALGB] (2) Real[2] RL_c.v = RL_c.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c.PhaseSystem.phaseVoltages(RL_c.V_nominal, 0.0)) (120) [ALGB] (2) Real[2] RL_c1.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c1.PhaseSystem.phasePowers_vi(RL_c1.v, -RL_c1.i) (121) [ALGB] (2) Real[2] RL_star.terminal.v (122) [ALGB] (1) Real[1] sen_D.terminal_n.theta (123) [ALGB] (1) Real sen_c.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_c.terminal_n.v) (124) [ALGB] (1) protected Real RL_ab.X (start = 1.0) (125) [ALGB] (1) protected Real RL_star.X (start = 1.0) (126) [ALGB] (2) Real[2] sen_c.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_c.terminal_n.v, sen_c.terminal_n.i) (127) [ALGB] (2) Real[2] RL_ab.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_ab.PhaseSystem.phasePowers_vi(RL_ab.v, -RL_ab.i) (128) [ALGB] (2) Real[2] RL_star.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_star.PhaseSystem.phasePowers_vi(RL_star.v, -RL_star.i) (129) [ALGB] (2) Real[2] RL_c.i = RL_c.terminal.i (start = {0.0 for $i1 in 1:2}) (130) [ALGB] (2) flow Real[2] sou_c.terminal.i (start = {0.0 for $i1 in 1:2}) (131) [DER-] (1) Real $DER.RL_b.theRef (132) [ALGB] (1) Real sen_c.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_c.terminal_n.i) (133) [ALGB] (1) Real[1] sou_bc.terminal.theta (134) [ALGB] (1) Real[1] RL_ab.terminal.theta (135) [DER-] (1) Real $DER.RL_c1.theRef (136) [ALGB] (2) Real[2] sou_c.terminal.v (137) [ALGB] (1) Real sen_bc.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_bc.terminal_n.v) (138) [ALGB] (1) Real[1] sou.terminal.theta (139) [ALGB] (2) Real[2] sen_bc.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_bc.terminal_n.v, sen_bc.terminal_n.i) (140) [ALGB] (1) protected Real RL_c.X (start = 1.0) (141) [ALGB] (2) Real[2] RL_c.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c.PhaseSystem.phasePowers_vi(RL_c.v, -RL_c.i) (142) [ALGB] (1) Real sou_ca.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ca.PhaseSystem.phase(sou_ca.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ca.PhaseSystem.phase(-sou_ca.terminal.i) (143) [ALGB] (1) Real[1] sou_a.terminal.theta (144) [ALGB] (1) protected Real RL_star.omega (145) [ALGB] (1) protected Real RL_tri.omega (146) [ALGB] (1) Real sen_bc.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_bc.terminal_n.i) (147) [ALGB] (2) flow Real[2] RL_tri.terminal.i (start = {0.0 for $i1 in 1:2}) (148) [ALGB] (1) Real sen_ab.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_ab.terminal_n.v) (149) [ALGB] (2) Real[2] sen_ab.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_ab.terminal_n.v, sen_ab.terminal_n.i) (150) [ALGB] (1) Real[1] sen_b.terminal_n.theta (151) [ALGB] (1) Real[1] sen_bc.terminal_n.theta (152) [ALGB] (1) Real[1] sen_ab.terminal_n.theta (153) [ALGB] (2) Real[2] sou_a.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_a.PhaseSystem.phasePowers_vi(sou_a.terminal.v, sou_a.terminal.i) (154) [ALGB] (1) Real[1] sen_Y.terminal_p.theta (155) [ALGB] (2) Real[2] RL_tri.terminal.v (156) [ALGB] (2) flow Real[2] sen_ab.terminal_n.i (start = {0.0 for $i1 in 1:2}) (157) [ALGB] (2) Real[2] RL_a.terminal.v (158) [ALGB] (1) Real sen_ab.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_ab.terminal_n.i) (159) [ALGB] (2) flow Real[2] sen_ca.terminal_n.i (start = {0.0 for $i1 in 1:2}) (160) [ALGB] (2) Real[2] RL_b.v = RL_b.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_b.PhaseSystem.phaseVoltages(RL_b.V_nominal, 0.0)) (161) [DER-] (1) Real $DER.RL_ab.theRef (162) [ALGB] (1) protected Real RL_c1.omega (163) [ALGB] (1) Real sen_b.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_b.terminal_n.v) (164) [ALGB] (1) Real sou_ab.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ab.PhaseSystem.phase(sou_ab.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ab.PhaseSystem.phase(-sou_ab.terminal.i) (165) [ALGB] (2) Real[2] sou_ca.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ca.PhaseSystem.phasePowers_vi(sou_ca.terminal.v, sou_ca.terminal.i) (166) [ALGB] (2) Real[2] sen_b.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_b.terminal_n.v, sen_b.terminal_n.i) (167) [ALGB] (2) flow Real[2] sen_D.terminal_p.i (start = {0.0 for $i1 in 1:2}) (168) [ALGB] (1) Real[1] RL_c.terminal.theta (169) [ALGB] (1) Real[1] RL_c1.terminal.theta (170) [ALGB] (2) Real[2] sen_ab.terminal_n.v (171) [ALGB] (2) flow Real[2] RL_a.terminal.i (start = {0.0 for $i1 in 1:2}) (172) [ALGB] (2) Real[2] sen_ca.terminal_n.v (173) [ALGB] (2) flow Real[2] sen_Y.terminal_n.i (start = {0.0 for $i1 in 1:2}) (174) [ALGB] (2) Real[2] RL_b.i = RL_b.terminal.i (start = {0.0 for $i1 in 1:2}) (175) [ALGB] (2) flow Real[2] sen_a.terminal_n.i (start = {0.0 for $i1 in 1:2}) (176) [ALGB] (1) Real sen_b.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_b.terminal_n.i) (177) [ALGB] (2) Real[2] sen_b.terminal_n.v (178) [ALGB] (2) Real[2] sen_c.terminal_n.v (179) [ALGB] (1) Real[1] sen_a.terminal_p.theta (180) [ALGB] (1) Real sou_b.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_b.PhaseSystem.phase(sou_b.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_b.PhaseSystem.phase(-sou_b.terminal.i) (181) [ALGB] (2) Real[2] sen_D.terminal_p.v System Equations (184/282) **************************** (1) [ARRY] (1) sou_a.terminal.theta = sen_a.terminal_n.theta ($RES_SIM_204) (2) [ARRY] (2) RL_b.S = {RL_b.v[1] * (-RL_b.i)[1] + RL_b.v[2] * (-RL_b.i)[2], RL_b.v[2] * (-RL_b.i)[1] - RL_b.v[1] * (-RL_b.i)[2]} ($RES_BND_255) (3) [FOR-] (2) ($RES_SIM_205) (3) [----] for $i1 in 1:2 loop (3) [----] [SCAL] (1) -(sen_ca.terminal_n.i[$i1] + sen_ca.terminal_p.i[$i1]) = 0.0 ($RES_SIM_206) (3) [----] end for; (4) [ARRY] (2) RL_c.terminal.v = {{RL_c.R, -RL_c.X} * RL_c.terminal.i, {RL_c.X, RL_c.R} * RL_c.terminal.i} ($RES_SIM_80) (5) [ARRY] (2) sou_a.terminal.v = {sou_a.V * cos(sou_a.phiSou), sou_a.V * sin(sou_a.phiSou)} ($RES_SIM_120) (6) [ARRY] (2) RL_c.v = RL_c.terminal.v ($RES_BND_256) (7) [SCAL] (1) RL_c.X = RL_c.omega * RL_c.L ($RES_SIM_81) (8) [ARRY] (2) RL_c.i = RL_c.terminal.i ($RES_BND_257) (9) [ARRY] (2) sen_ca.terminal_n.v = sen_ca.terminal_p.v ($RES_SIM_207) (10) [SCAL] (1) RL_c.omega = $DER.RL_c.theRef ($RES_SIM_82) (11) [SCAL] (1) sou_a.terminal.theta[1] = 6.283185307179586 * sou_a.f * time ($RES_SIM_122) (12) [ARRY] (2) RL_c.S = {RL_c.v[1] * (-RL_c.i)[1] + RL_c.v[2] * (-RL_c.i)[2], RL_c.v[2] * (-RL_c.i)[1] - RL_c.v[1] * (-RL_c.i)[2]} ($RES_BND_258) (13) [ARRY] (1) sen_ca.terminal_n.theta = sen_ca.terminal_p.theta ($RES_SIM_208) (14) [SCAL] (1) RL_c.theRef = RL_c.terminal.theta[1] ($RES_SIM_83) (15) [ARRY] (2) RL_tri.v = RL_tri.terminal.v ($RES_BND_259) (16) [FOR-] (2) ($RES_SIM_209) (16) [----] for $i1 in 1:2 loop (16) [----] [SCAL] (1) -(sen_bc.terminal_n.i[$i1] + sen_bc.terminal_p.i[$i1]) = 0.0 ($RES_SIM_210) (16) [----] end for; (17) [ARRY] (2) RL_c1.terminal.v = {{RL_c1.R, -RL_c1.X} * RL_c1.terminal.i, {RL_c1.X, RL_c1.R} * RL_c1.terminal.i} ($RES_SIM_11) (18) [ARRY] (2) RL_tri.i = RL_tri.terminal.i ($RES_BND_260) (19) [SCAL] (1) RL_c1.X = RL_c1.omega * RL_c1.L ($RES_SIM_12) (20) [ARRY] (2) RL_tri.S = {RL_tri.v[1] * (-RL_tri.i)[1] + RL_tri.v[2] * (-RL_tri.i)[2], RL_tri.v[2] * (-RL_tri.i)[1] - RL_tri.v[1] * (-RL_tri.i)[2]} ($RES_BND_261) (21) [SCAL] (1) RL_c1.omega = $DER.RL_c1.theRef ($RES_SIM_13) (22) [ARRY] (2) sen_bc.terminal_n.v = sen_bc.terminal_p.v ($RES_SIM_211) (23) [ARRY] (2) sou_ab.S = {sou_ab.terminal.v[1] * sou_ab.terminal.i[1] + sou_ab.terminal.v[2] * sou_ab.terminal.i[2], sou_ab.terminal.v[2] * sou_ab.terminal.i[1] - sou_ab.terminal.v[1] * sou_ab.terminal.i[2]} ($RES_BND_262) (24) [SCAL] (1) RL_c1.theRef = RL_c1.terminal.theta[1] ($RES_SIM_14) (25) [ARRY] (1) sen_bc.terminal_n.theta = sen_bc.terminal_p.theta ($RES_SIM_212) (26) [SCAL] (1) sou_ab.phi = atan2(sou_ab.terminal.v[2], sou_ab.terminal.v[1]) - atan2((-sou_ab.terminal.i)[2], (-sou_ab.terminal.i)[1]) ($RES_BND_263) (27) [FOR-] (2) ($RES_SIM_213) (27) [----] for $i1 in 1:2 loop (27) [----] [SCAL] (1) -(sen_c.terminal_n.i[$i1] + sen_c.terminal_p.i[$i1]) = 0.0 ($RES_SIM_214) (27) [----] end for; (28) [ARRY] (2) sou_bc.S = {sou_bc.terminal.v[1] * sou_bc.terminal.i[1] + sou_bc.terminal.v[2] * sou_bc.terminal.i[2], sou_bc.terminal.v[2] * sou_bc.terminal.i[1] - sou_bc.terminal.v[1] * sou_bc.terminal.i[2]} ($RES_BND_264) (29) [SCAL] (1) sou_bc.phi = atan2(sou_bc.terminal.v[2], sou_bc.terminal.v[1]) - atan2((-sou_bc.terminal.i)[2], (-sou_bc.terminal.i)[1]) ($RES_BND_265) (30) [ARRY] (2) sen_c.terminal_n.v = sen_c.terminal_p.v ($RES_SIM_215) (31) [ARRY] (2) sou_ca.S = {sou_ca.terminal.v[1] * sou_ca.terminal.i[1] + sou_ca.terminal.v[2] * sou_ca.terminal.i[2], sou_ca.terminal.v[2] * sou_ca.terminal.i[1] - sou_ca.terminal.v[1] * sou_ca.terminal.i[2]} ($RES_BND_266) (32) [ARRY] (1) sen_c.terminal_n.theta = sen_c.terminal_p.theta ($RES_SIM_216) (33) [SCAL] (1) sou_ca.phi = atan2(sou_ca.terminal.v[2], sou_ca.terminal.v[1]) - atan2((-sou_ca.terminal.i)[2], (-sou_ca.terminal.i)[1]) ($RES_BND_267) (34) [FOR-] (2) ($RES_SIM_217) (34) [----] for $i1 in 1:2 loop (34) [----] [SCAL] (1) -(sen_b.terminal_n.i[$i1] + sen_b.terminal_p.i[$i1]) = 0.0 ($RES_SIM_218) (34) [----] end for; (35) [ARRY] (2) RL_ab.v = RL_ab.terminal.v ($RES_BND_268) (36) [ARRY] (2) RL_ab.i = RL_ab.terminal.i ($RES_BND_269) (37) [ARRY] (2) sen_b.terminal_n.v = sen_b.terminal_p.v ($RES_SIM_219) (38) [ARRY] (2) RL_star.terminal.v = {{RL_star.R, -RL_star.X} * RL_star.terminal.i, {RL_star.X, RL_star.R} * RL_star.terminal.i} ($RES_SIM_134) (39) [ARRY] (2) RL_b.terminal.v = {{RL_b.R, -RL_b.X} * RL_b.terminal.i, {RL_b.X, RL_b.R} * RL_b.terminal.i} ($RES_SIM_95) (40) [SCAL] (1) RL_star.X = RL_star.omega * RL_star.L ($RES_SIM_135) (41) [SCAL] (1) RL_b.X = RL_b.omega * RL_b.L ($RES_SIM_96) (42) [SCAL] (1) RL_star.omega = $DER.RL_star.theRef ($RES_SIM_136) (43) [SCAL] (1) RL_b.omega = $DER.RL_b.theRef ($RES_SIM_97) (44) [SCAL] (1) RL_star.theRef = RL_star.terminal.theta[1] ($RES_SIM_137) (45) [SCAL] (1) RL_b.theRef = RL_b.terminal.theta[1] ($RES_SIM_98) (46) [ARRY] (2) sou.terminal.v = {sou.V * cos(sou.phiSou), sou.V * sin(sou.phiSou)} ($RES_SIM_138) (47) [ARRY] (2) RL_ab.S = {RL_ab.v[1] * (-RL_ab.i)[1] + RL_ab.v[2] * (-RL_ab.i)[2], RL_ab.v[2] * (-RL_ab.i)[1] - RL_ab.v[1] * (-RL_ab.i)[2]} ($RES_BND_270) (48) [ARRY] (1) sen_b.terminal_n.theta = sen_b.terminal_p.theta ($RES_SIM_220) (49) [ARRY] (2) RL_bc.v = RL_bc.terminal.v ($RES_BND_271) (50) [FOR-] (2) ($RES_SIM_221) (50) [----] for $i1 in 1:2 loop (50) [----] [SCAL] (1) -(sen_D.terminal_n.i[$i1] + sen_D.terminal_p.i[$i1]) = 0.0 ($RES_SIM_222) (50) [----] end for; (51) [ARRY] (2) RL_bc.i = RL_bc.terminal.i ($RES_BND_272) (52) [ARRY] (2) RL_bc.S = {RL_bc.v[1] * (-RL_bc.i)[1] + RL_bc.v[2] * (-RL_bc.i)[2], RL_bc.v[2] * (-RL_bc.i)[1] - RL_bc.v[1] * (-RL_bc.i)[2]} ($RES_BND_273) (53) [ARRY] (2) sen_D.terminal_n.v = sen_D.terminal_p.v ($RES_SIM_223) (54) [ARRY] (2) RL_c1.v = RL_c1.terminal.v ($RES_BND_274) (55) [ARRY] (1) sen_D.terminal_n.theta = sen_D.terminal_p.theta ($RES_SIM_224) (56) [ARRY] (2) RL_bc.terminal.v = {{RL_bc.R, -RL_bc.X} * RL_bc.terminal.i, {RL_bc.X, RL_bc.R} * RL_bc.terminal.i} ($RES_SIM_26) (57) [ARRY] (2) RL_c1.i = RL_c1.terminal.i ($RES_BND_275) (58) [FOR-] (2) ($RES_SIM_225) (58) [----] for $i1 in 1:2 loop (58) [----] [SCAL] (1) -(sen_Y.terminal_n.i[$i1] + sen_Y.terminal_p.i[$i1]) = 0.0 ($RES_SIM_226) (58) [----] end for; (59) [SCAL] (1) RL_bc.X = RL_bc.omega * RL_bc.L ($RES_SIM_27) (60) [SCAL] (1) sou.terminal.theta[1] = 6.283185307179586 * sou.f * time ($RES_SIM_140) (61) [ARRY] (2) RL_c1.S = {RL_c1.v[1] * (-RL_c1.i)[1] + RL_c1.v[2] * (-RL_c1.i)[2], RL_c1.v[2] * (-RL_c1.i)[1] - RL_c1.v[1] * (-RL_c1.i)[2]} ($RES_BND_276) (62) [SCAL] (1) RL_bc.omega = $DER.RL_bc.theRef ($RES_SIM_28) (63) [FOR-] (2) ($RES_SIM_141) (63) [----] for $i1 in 1:2 loop (63) [----] [SCAL] (1) sen_ca.terminal_p.i[$i1] + RL_c1.terminal.i[$i1] = 0.0 ($RES_SIM_142) (63) [----] end for; (64) [SCAL] (1) sen_a.V = sen_a.terminal_n.v / ((sen_a.terminal_n.v * sen_a.terminal_n.v * (sen_a.terminal_n.v * sen_a.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_a.terminal_n.v) ($RES_BND_277) (65) [ARRY] (2) sen_Y.terminal_n.v = sen_Y.terminal_p.v ($RES_SIM_227) (66) [SCAL] (1) RL_bc.theRef = RL_bc.terminal.theta[1] ($RES_SIM_29) (67) [SCAL] (1) sen_a.I = sen_a.terminal_n.i / ((sen_a.terminal_n.i * sen_a.terminal_n.i * (sen_a.terminal_n.i * sen_a.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_a.terminal_n.i) ($RES_BND_278) (68) [ARRY] (1) sen_Y.terminal_n.theta = sen_Y.terminal_p.theta ($RES_SIM_228) (69) [ARRY] (2) sen_ca.terminal_p.v = RL_c1.terminal.v ($RES_SIM_143) (70) [ARRY] (2) sen_a.S = {sen_a.terminal_n.v[1] * sen_a.terminal_n.i[1] + sen_a.terminal_n.v[2] * sen_a.terminal_n.i[2], sen_a.terminal_n.v[2] * sen_a.terminal_n.i[1] - sen_a.terminal_n.v[1] * sen_a.terminal_n.i[2]} ($RES_BND_279) (71) [FOR-] (2) ($RES_SIM_229) (71) [----] for $i1 in 1:2 loop (71) [----] [SCAL] (1) -(sen_ab.terminal_n.i[$i1] + sen_ab.terminal_p.i[$i1]) = 0.0 ($RES_SIM_230) (71) [----] end for; (72) [ARRY] (1) sen_ca.terminal_p.theta = RL_c1.terminal.theta ($RES_SIM_144) (73) [FOR-] (2) ($RES_SIM_145) (73) [----] for $i1 in 1:2 loop (73) [----] [SCAL] (1) sou_ca.terminal.i[$i1] + sen_ca.terminal_n.i[$i1] = 0.0 ($RES_SIM_146) (73) [----] end for; (74) [ARRY] (2) sou_ca.terminal.v = sen_ca.terminal_n.v ($RES_SIM_147) (75) [ARRY] (1) sou_ca.terminal.theta = sen_ca.terminal_n.theta ($RES_SIM_148) (76) [FOR-] (2) ($RES_SIM_149) (76) [----] for $i1 in 1:2 loop (76) [----] [SCAL] (1) sen_bc.terminal_p.i[$i1] + RL_bc.terminal.i[$i1] = 0.0 ($RES_SIM_150) (76) [----] end for; (77) [SCAL] (1) sen_ab.V = sen_ab.terminal_n.v / ((sen_ab.terminal_n.v * sen_ab.terminal_n.v * (sen_ab.terminal_n.v * sen_ab.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_ab.terminal_n.v) ($RES_BND_280) (78) [SCAL] (1) sen_ab.I = sen_ab.terminal_n.i / ((sen_ab.terminal_n.i * sen_ab.terminal_n.i * (sen_ab.terminal_n.i * sen_ab.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_ab.terminal_n.i) ($RES_BND_281) (79) [ARRY] (2) sen_ab.terminal_n.v = sen_ab.terminal_p.v ($RES_SIM_231) (80) [ARRY] (2) sen_ab.S = {sen_ab.terminal_n.v[1] * sen_ab.terminal_n.i[1] + sen_ab.terminal_n.v[2] * sen_ab.terminal_n.i[2], sen_ab.terminal_n.v[2] * sen_ab.terminal_n.i[1] - sen_ab.terminal_n.v[1] * sen_ab.terminal_n.i[2]} ($RES_BND_282) (81) [ARRY] (1) sen_ab.terminal_n.theta = sen_ab.terminal_p.theta ($RES_SIM_232) (82) [SCAL] (1) sen_Y.V = sen_Y.terminal_n.v / ((sen_Y.terminal_n.v * sen_Y.terminal_n.v * (sen_Y.terminal_n.v * sen_Y.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_Y.terminal_n.v) ($RES_BND_283) (83) [FOR-] (2) ($RES_SIM_233) (83) [----] for $i1 in 1:2 loop (83) [----] [SCAL] (1) -(sen_a.terminal_n.i[$i1] + sen_a.terminal_p.i[$i1]) = 0.0 ($RES_SIM_234) (83) [----] end for; (84) [SCAL] (1) sen_Y.I = sen_Y.terminal_n.i / ((sen_Y.terminal_n.i * sen_Y.terminal_n.i * (sen_Y.terminal_n.i * sen_Y.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_Y.terminal_n.i) ($RES_BND_284) (85) [ARRY] (2) sen_Y.S = {sen_Y.terminal_n.v[1] * sen_Y.terminal_n.i[1] + sen_Y.terminal_n.v[2] * sen_Y.terminal_n.i[2], sen_Y.terminal_n.v[2] * sen_Y.terminal_n.i[1] - sen_Y.terminal_n.v[1] * sen_Y.terminal_n.i[2]} ($RES_BND_285) (86) [ARRY] (2) sen_a.terminal_n.v = sen_a.terminal_p.v ($RES_SIM_235) (87) [SCAL] (1) sen_D.V = sen_D.terminal_n.v / ((sen_D.terminal_n.v * sen_D.terminal_n.v * (sen_D.terminal_n.v * sen_D.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_D.terminal_n.v) ($RES_BND_286) (88) [ARRY] (1) sen_a.terminal_n.theta = sen_a.terminal_p.theta ($RES_SIM_236) (89) [ARRY] (2) sen_bc.terminal_p.v = RL_bc.terminal.v ($RES_SIM_151) (90) [SCAL] (1) sen_D.I = sen_D.terminal_n.i / ((sen_D.terminal_n.i * sen_D.terminal_n.i * (sen_D.terminal_n.i * sen_D.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_D.terminal_n.i) ($RES_BND_287) (91) [ARRY] (1) sen_bc.terminal_p.theta = RL_bc.terminal.theta ($RES_SIM_152) (92) [ARRY] (2) sen_D.S = {sen_D.terminal_n.v[1] * sen_D.terminal_n.i[1] + sen_D.terminal_n.v[2] * sen_D.terminal_n.i[2], sen_D.terminal_n.v[2] * sen_D.terminal_n.i[1] - sen_D.terminal_n.v[1] * sen_D.terminal_n.i[2]} ($RES_BND_288) (93) [FOR-] (2) ($RES_SIM_153) (93) [----] for $i1 in 1:2 loop (93) [----] [SCAL] (1) sou_bc.terminal.i[$i1] + sen_bc.terminal_n.i[$i1] = 0.0 ($RES_SIM_154) (93) [----] end for; (94) [SCAL] (1) sen_b.V = sen_b.terminal_n.v / ((sen_b.terminal_n.v * sen_b.terminal_n.v * (sen_b.terminal_n.v * sen_b.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_b.terminal_n.v) ($RES_BND_289) (95) [ARRY] (2) sou_bc.terminal.v = sen_bc.terminal_n.v ($RES_SIM_155) (96) [ARRY] (1) sou_bc.terminal.theta = sen_bc.terminal_n.theta ($RES_SIM_156) (97) [FOR-] (2) ($RES_SIM_157) (97) [----] for $i1 in 1:2 loop (97) [----] [SCAL] (1) sen_c.terminal_p.i[$i1] + RL_c.terminal.i[$i1] = 0.0 ($RES_SIM_158) (97) [----] end for; (98) [ARRY] (2) sen_c.terminal_p.v = RL_c.terminal.v ($RES_SIM_159) (99) [ARRY] (2) RL_ab.terminal.v = {{RL_ab.R, -RL_ab.X} * RL_ab.terminal.i, {RL_ab.X, RL_ab.R} * RL_ab.terminal.i} ($RES_SIM_41) (100) [SCAL] (1) sen_b.I = sen_b.terminal_n.i / ((sen_b.terminal_n.i * sen_b.terminal_n.i * (sen_b.terminal_n.i * sen_b.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_b.terminal_n.i) ($RES_BND_290) (101) [SCAL] (1) RL_ab.X = RL_ab.omega * RL_ab.L ($RES_SIM_42) (102) [ARRY] (2) sen_b.S = {sen_b.terminal_n.v[1] * sen_b.terminal_n.i[1] + sen_b.terminal_n.v[2] * sen_b.terminal_n.i[2], sen_b.terminal_n.v[2] * sen_b.terminal_n.i[1] - sen_b.terminal_n.v[1] * sen_b.terminal_n.i[2]} ($RES_BND_291) (103) [SCAL] (1) RL_ab.omega = $DER.RL_ab.theRef ($RES_SIM_43) (104) [SCAL] (1) sen_c.V = sen_c.terminal_n.v / ((sen_c.terminal_n.v * sen_c.terminal_n.v * (sen_c.terminal_n.v * sen_c.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_c.terminal_n.v) ($RES_BND_292) (105) [SCAL] (1) sen_c.I = sen_c.terminal_n.i / ((sen_c.terminal_n.i * sen_c.terminal_n.i * (sen_c.terminal_n.i * sen_c.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_c.terminal_n.i) ($RES_BND_293) (106) [SCAL] (1) RL_ab.theRef = RL_ab.terminal.theta[1] ($RES_SIM_44) (107) [ARRY] (2) sen_c.S = {sen_c.terminal_n.v[1] * sen_c.terminal_n.i[1] + sen_c.terminal_n.v[2] * sen_c.terminal_n.i[2], sen_c.terminal_n.v[2] * sen_c.terminal_n.i[1] - sen_c.terminal_n.v[1] * sen_c.terminal_n.i[2]} ($RES_BND_294) (108) [ARRY] (2) sou_ca.terminal.v = {sou_ca.V * cos(sou_ca.phiSou), sou_ca.V * sin(sou_ca.phiSou)} ($RES_SIM_45) (109) [SCAL] (1) sen_bc.V = sen_bc.terminal_n.v / ((sen_bc.terminal_n.v * sen_bc.terminal_n.v * (sen_bc.terminal_n.v * sen_bc.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_bc.terminal_n.v) ($RES_BND_295) (110) [SCAL] (1) sen_bc.I = sen_bc.terminal_n.i / ((sen_bc.terminal_n.i * sen_bc.terminal_n.i * (sen_bc.terminal_n.i * sen_bc.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_bc.terminal_n.i) ($RES_BND_296) (111) [SCAL] (1) sou_ca.terminal.theta[1] = 6.283185307179586 * sou_ca.f * time ($RES_SIM_47) (112) [ARRY] (1) sen_c.terminal_p.theta = RL_c.terminal.theta ($RES_SIM_160) (113) [ARRY] (2) sen_bc.S = {sen_bc.terminal_n.v[1] * sen_bc.terminal_n.i[1] + sen_bc.terminal_n.v[2] * sen_bc.terminal_n.i[2], sen_bc.terminal_n.v[2] * sen_bc.terminal_n.i[1] - sen_bc.terminal_n.v[1] * sen_bc.terminal_n.i[2]} ($RES_BND_297) (114) [ARRY] (2) sou_bc.terminal.v = {sou_bc.V * cos(sou_bc.phiSou), sou_bc.V * sin(sou_bc.phiSou)} ($RES_SIM_48) (115) [FOR-] (2) ($RES_SIM_161) (115) [----] for $i1 in 1:2 loop (115) [----] [SCAL] (1) sou_c.terminal.i[$i1] + sen_c.terminal_n.i[$i1] = 0.0 ($RES_SIM_162) (115) [----] end for; (116) [SCAL] (1) sen_ca.V = sen_ca.terminal_n.v / ((sen_ca.terminal_n.v * sen_ca.terminal_n.v * (sen_ca.terminal_n.v * sen_ca.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_ca.terminal_n.v) ($RES_BND_298) (117) [SCAL] (1) sen_ca.I = sen_ca.terminal_n.i / ((sen_ca.terminal_n.i * sen_ca.terminal_n.i * (sen_ca.terminal_n.i * sen_ca.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_ca.terminal_n.i) ($RES_BND_299) (118) [ARRY] (2) sou_c.terminal.v = sen_c.terminal_n.v ($RES_SIM_163) (119) [ARRY] (1) sou_c.terminal.theta = sen_c.terminal_n.theta ($RES_SIM_164) (120) [FOR-] (2) ($RES_SIM_165) (120) [----] for $i1 in 1:2 loop (120) [----] [SCAL] (1) sen_b.terminal_p.i[$i1] + RL_b.terminal.i[$i1] = 0.0 ($RES_SIM_166) (120) [----] end for; (121) [ARRY] (2) sen_b.terminal_p.v = RL_b.terminal.v ($RES_SIM_167) (122) [ARRY] (1) sen_b.terminal_p.theta = RL_b.terminal.theta ($RES_SIM_168) (123) [FOR-] (2) ($RES_SIM_169) (123) [----] for $i1 in 1:2 loop (123) [----] [SCAL] (1) sou_b.terminal.i[$i1] + sen_b.terminal_n.i[$i1] = 0.0 ($RES_SIM_170) (123) [----] end for; (124) [ARRY] (2) sen_ca.S = {sen_ca.terminal_n.v[1] * sen_ca.terminal_n.i[1] + sen_ca.terminal_n.v[2] * sen_ca.terminal_n.i[2], sen_ca.terminal_n.v[2] * sen_ca.terminal_n.i[1] - sen_ca.terminal_n.v[1] * sen_ca.terminal_n.i[2]} ($RES_BND_300) (125) [SCAL] (1) sou_bc.terminal.theta[1] = 6.283185307179586 * sou_bc.f * time ($RES_SIM_50) (126) [ARRY] (2) sou_ab.terminal.v = {sou_ab.V * cos(sou_ab.phiSou), sou_ab.V * sin(sou_ab.phiSou)} ($RES_SIM_51) (127) [SCAL] (1) sou_ab.terminal.theta[1] = 6.283185307179586 * sou_ab.f * time ($RES_SIM_53) (128) [ARRY] (2) sou_b.terminal.v = sen_b.terminal_n.v ($RES_SIM_171) (129) [ARRY] (1) sou_b.terminal.theta = sen_b.terminal_n.theta ($RES_SIM_172) (130) [FOR-] (2) ($RES_SIM_173) (130) [----] for $i1 in 1:2 loop (130) [----] [SCAL] (1) sen_D.terminal_p.i[$i1] + RL_tri.terminal.i[$i1] = 0.0 ($RES_SIM_174) (130) [----] end for; (131) [ARRY] (2) sen_D.terminal_p.v = RL_tri.terminal.v ($RES_SIM_175) (132) [ARRY] (1) sen_D.terminal_p.theta = RL_tri.terminal.theta ($RES_SIM_176) (133) [FOR-] (2) ($RES_SIM_177) (133) [----] for $i1 in 1:2 loop (133) [----] [SCAL] (1) sen_Y.terminal_p.i[$i1] + RL_star.terminal.i[$i1] = 0.0 ($RES_SIM_178) (133) [----] end for; (134) [ARRY] (2) sen_Y.terminal_p.v = RL_star.terminal.v ($RES_SIM_179) (135) [ARRY] (2) sou.S = {sou.terminal.v[1] * sou.terminal.i[1] + sou.terminal.v[2] * sou.terminal.i[2], sou.terminal.v[2] * sou.terminal.i[1] - sou.terminal.v[1] * sou.terminal.i[2]} ($RES_BND_239) (136) [ARRY] (2) RL_tri.terminal.v = {{RL_tri.R / 3.0, -RL_tri.X / 3.0} * RL_tri.terminal.i, {RL_tri.X / 3.0, RL_tri.R / 3.0} * RL_tri.terminal.i} ($RES_SIM_65) (137) [SCAL] (1) RL_tri.X = RL_tri.omega * RL_tri.L ($RES_SIM_66) (138) [SCAL] (1) RL_tri.omega = $DER.RL_tri.theRef ($RES_SIM_67) (139) [ARRY] (1) sen_Y.terminal_p.theta = RL_star.terminal.theta ($RES_SIM_180) (140) [SCAL] (1) RL_tri.theRef = RL_tri.terminal.theta[1] ($RES_SIM_68) (141) [SCAL] (1) sen_D.terminal_n.i[2] + sou.terminal.i[2] + sen_Y.terminal_n.i[2] = 0.0 ($RES_SIM_181) (142) [SCAL] (1) sen_D.terminal_n.i[1] + sou.terminal.i[1] + sen_Y.terminal_n.i[1] = 0.0 ($RES_SIM_182) (143) [SCAL] (1) sou.terminal.v[2] = sen_Y.terminal_n.v[2] ($RES_SIM_183) (144) [SCAL] (1) sou.terminal.v[2] = sen_D.terminal_n.v[2] ($RES_SIM_184) (145) [SCAL] (1) sou.terminal.v[1] = sen_Y.terminal_n.v[1] ($RES_SIM_185) (146) [SCAL] (1) sou.terminal.v[1] = sen_D.terminal_n.v[1] ($RES_SIM_186) (147) [SCAL] (1) sou.terminal.theta[1] = sen_Y.terminal_n.theta[1] ($RES_SIM_187) (148) [SCAL] (1) sou.terminal.theta[1] = sen_D.terminal_n.theta[1] ($RES_SIM_188) (149) [FOR-] (2) ($RES_SIM_189) (149) [----] for $i1 in 1:2 loop (149) [----] [SCAL] (1) sen_ab.terminal_p.i[$i1] + RL_ab.terminal.i[$i1] = 0.0 ($RES_SIM_190) (149) [----] end for; (150) [SCAL] (1) errorD = sqrt((sen_D.S[2] - (sen_ca.S[2] + sen_ab.S[2] + sen_bc.S[2])) ^ 2.0 + (sen_D.S[1] - (sen_ca.S[1] + sen_ab.S[1] + sen_bc.S[1])) ^ 2.0) ($RES_$AUX_302) (151) [SCAL] (1) errorY = sqrt((sen_Y.S[2] - (sen_c.S[2] + sen_a.S[2] + sen_b.S[2])) ^ 2.0 + (sen_Y.S[1] - (sen_c.S[1] + sen_a.S[1] + sen_b.S[1])) ^ 2.0) ($RES_$AUX_301) (152) [SCAL] (1) sou.phi = atan2(sou.terminal.v[2], sou.terminal.v[1]) - atan2((-sou.terminal.i)[2], (-sou.terminal.i)[1]) ($RES_BND_240) (153) [ARRY] (2) RL_star.v = RL_star.terminal.v ($RES_BND_241) (154) [ARRY] (2) RL_star.i = RL_star.terminal.i ($RES_BND_242) (155) [ARRY] (2) RL_star.S = {RL_star.v[1] * (-RL_star.i)[1] + RL_star.v[2] * (-RL_star.i)[2], RL_star.v[2] * (-RL_star.i)[1] - RL_star.v[1] * (-RL_star.i)[2]} ($RES_BND_243) (156) [ARRY] (2) sou_a.S = {sou_a.terminal.v[1] * sou_a.terminal.i[1] + sou_a.terminal.v[2] * sou_a.terminal.i[2], sou_a.terminal.v[2] * sou_a.terminal.i[1] - sou_a.terminal.v[1] * sou_a.terminal.i[2]} ($RES_BND_244) (157) [SCAL] (1) sou_a.phi = atan2(sou_a.terminal.v[2], sou_a.terminal.v[1]) - atan2((-sou_a.terminal.i)[2], (-sou_a.terminal.i)[1]) ($RES_BND_245) (158) [ARRY] (2) RL_a.terminal.v = {{RL_a.R, -RL_a.X} * RL_a.terminal.i, {RL_a.X, RL_a.R} * RL_a.terminal.i} ($RES_SIM_110) (159) [ARRY] (2) sou_b.S = {sou_b.terminal.v[1] * sou_b.terminal.i[1] + sou_b.terminal.v[2] * sou_b.terminal.i[2], sou_b.terminal.v[2] * sou_b.terminal.i[1] - sou_b.terminal.v[1] * sou_b.terminal.i[2]} ($RES_BND_246) (160) [SCAL] (1) RL_a.X = RL_a.omega * RL_a.L ($RES_SIM_111) (161) [SCAL] (1) sou_b.phi = atan2(sou_b.terminal.v[2], sou_b.terminal.v[1]) - atan2((-sou_b.terminal.i)[2], (-sou_b.terminal.i)[1]) ($RES_BND_247) (162) [SCAL] (1) RL_a.omega = $DER.RL_a.theRef ($RES_SIM_112) (163) [ARRY] (2) sou_c.S = {sou_c.terminal.v[1] * sou_c.terminal.i[1] + sou_c.terminal.v[2] * sou_c.terminal.i[2], sou_c.terminal.v[2] * sou_c.terminal.i[1] - sou_c.terminal.v[1] * sou_c.terminal.i[2]} ($RES_BND_248) (164) [SCAL] (1) RL_a.theRef = RL_a.terminal.theta[1] ($RES_SIM_113) (165) [SCAL] (1) sou_c.phi = atan2(sou_c.terminal.v[2], sou_c.terminal.v[1]) - atan2((-sou_c.terminal.i)[2], (-sou_c.terminal.i)[1]) ($RES_BND_249) (166) [ARRY] (2) sou_c.terminal.v = {sou_c.V * cos(sou_c.phiSou), sou_c.V * sin(sou_c.phiSou)} ($RES_SIM_114) (167) [SCAL] (1) sou_c.terminal.theta[1] = 6.283185307179586 * sou_c.f * time ($RES_SIM_116) (168) [ARRY] (2) sou_b.terminal.v = {sou_b.V * cos(sou_b.phiSou), sou_b.V * sin(sou_b.phiSou)} ($RES_SIM_117) (169) [ARRY] (2) sen_ab.terminal_p.v = RL_ab.terminal.v ($RES_SIM_191) (170) [ARRY] (1) sen_ab.terminal_p.theta = RL_ab.terminal.theta ($RES_SIM_192) (171) [SCAL] (1) sou_b.terminal.theta[1] = 6.283185307179586 * sou_b.f * time ($RES_SIM_119) (172) [FOR-] (2) ($RES_SIM_193) (172) [----] for $i1 in 1:2 loop (172) [----] [SCAL] (1) sou_ab.terminal.i[$i1] + sen_ab.terminal_n.i[$i1] = 0.0 ($RES_SIM_194) (172) [----] end for; (173) [ARRY] (2) sou_ab.terminal.v = sen_ab.terminal_n.v ($RES_SIM_195) (174) [ARRY] (1) sou_ab.terminal.theta = sen_ab.terminal_n.theta ($RES_SIM_196) (175) [FOR-] (2) ($RES_SIM_197) (175) [----] for $i1 in 1:2 loop (175) [----] [SCAL] (1) sen_a.terminal_p.i[$i1] + RL_a.terminal.i[$i1] = 0.0 ($RES_SIM_198) (175) [----] end for; (176) [ARRY] (2) sen_a.terminal_p.v = RL_a.terminal.v ($RES_SIM_199) (177) [ARRY] (2) RL_a.v = RL_a.terminal.v ($RES_BND_250) (178) [ARRY] (1) sen_a.terminal_p.theta = RL_a.terminal.theta ($RES_SIM_200) (179) [ARRY] (2) RL_a.i = RL_a.terminal.i ($RES_BND_251) (180) [FOR-] (2) ($RES_SIM_201) (180) [----] for $i1 in 1:2 loop (180) [----] [SCAL] (1) sou_a.terminal.i[$i1] + sen_a.terminal_n.i[$i1] = 0.0 ($RES_SIM_202) (180) [----] end for; (181) [ARRY] (2) RL_a.S = {RL_a.v[1] * (-RL_a.i)[1] + RL_a.v[2] * (-RL_a.i)[2], RL_a.v[2] * (-RL_a.i)[1] - RL_a.v[1] * (-RL_a.i)[2]} ($RES_BND_252) (182) [ARRY] (2) RL_b.v = RL_b.terminal.v ($RES_BND_253) (183) [ARRY] (2) sou_a.terminal.v = sen_a.terminal_n.v ($RES_SIM_203) (184) [ARRY] (2) RL_b.i = RL_b.terminal.i ($RES_BND_254)