Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr Buildings_3.0.0_Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Buildings 3.0.0/package.mo", uses=false) Using package Buildings with version 3.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Buildings 3.0.0/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Using package Modelica_StateGraph2 with version 2.0.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo) Running command: translateModel(Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases,tolerance=1e-05,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Buildings_3.0.0_Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases") translateModel(Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases,tolerance=1e-05,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Buildings_3.0.0_Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases") [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo:257:38-257:110:writable] Warning: The file was not encoded in UTF-8: "

An important practical aspect of state machines is the abilit...". Defaulting to 7-bit ASCII with unknown characters replaced by '?'. To change encoding when loading a file: loadFile(encoding="ISO-XXXX-YY"). To change it in a package: add a file package.encoding at the top-level. Note: The Modelica Language Specification only allows files encoded in UTF-8. [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo:761:36-761:108:writable] Warning: The file was not encoded in UTF-8: "

The Modelica_StateGraph2 library is described in detail in (O...". Defaulting to 7-bit ASCII with unknown characters replaced by '?'. To change encoding when loading a file: loadFile(encoding="ISO-XXXX-YY"). To change it in a package: add a file package.encoding at the top-level. Note: The Modelica Language Specification only allows files encoded in UTF-8. [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo:1435:36-1435:108:writable] Warning: The file was not encoded in UTF-8: "

Main Authors:
SCode: time 2.153e-05/2.154e-05, allocations: 2.281 kB / 0.5923 GB, free: 18.28 MB / 446.1 MB Notification: Performance of NFInst.instantiate(Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases): time 0.009282/0.009312, allocations: 10.92 MB / 0.6029 GB, free: 7.961 MB / 446.1 MB Notification: Performance of NFInst.instExpressions: time 0.00761/0.01695, allocations: 6.206 MB / 0.609 GB, free: 1.73 MB / 446.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.000976/0.01796, allocations: 55.62 kB / 0.609 GB, free: 1.676 MB / 446.1 MB Notification: Performance of NFTyping.typeComponents: time 0.003297/0.02126, allocations: 1.725 MB / 0.6107 GB, free: 15.95 MB / 462.1 MB Notification: Performance of NFTyping.typeBindings: time 0.00313/0.0244, allocations: 1.225 MB / 0.6119 GB, free: 14.72 MB / 462.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.00204/0.0265, allocations: 0.8044 MB / 0.6127 GB, free: 13.92 MB / 462.1 MB Notification: Performance of NFFlatten.flatten: time 0.002701/0.02921, allocations: 2.322 MB / 0.615 GB, free: 11.59 MB / 462.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.001186/0.0304, allocations: 0.9925 MB / 0.6159 GB, free: 10.57 MB / 462.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.000986/0.0314, allocations: 0.8093 MB / 0.6167 GB, free: 9.758 MB / 462.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0008897/0.0323, allocations: 0.766 MB / 0.6175 GB, free: 8.988 MB / 462.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0001196/0.03243, allocations: 88 kB / 0.6176 GB, free: 8.902 MB / 462.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.001909/0.03434, allocations: 1.029 MB / 0.6186 GB, free: 7.871 MB / 462.1 MB Notification: Performance of combineBinaries: time 0.001513/0.03587, allocations: 2.307 MB / 0.6208 GB, free: 5.539 MB / 462.1 MB Notification: Performance of replaceArrayConstructors: time 0.0008547/0.03673, allocations: 1.531 MB / 0.6223 GB, free: 3.992 MB / 462.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0002546/0.03699, allocations: 223.2 kB / 0.6225 GB, free: 3.773 MB / 462.1 MB Notification: Performance of FrontEnd: time 0.0001954/0.03719, allocations: 43.75 kB / 0.6226 GB, free: 3.73 MB / 462.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 361 (263) * Number of variables: 361 (260) Notification: Performance of Bindings: time 0.005038/0.04224, allocations: 6.11 MB / 0.6285 GB, free: 13.37 MB / 478.1 MB Notification: Performance of FunctionAlias: time 0.0004235/0.04268, allocations: 416.6 kB / 0.6289 GB, free: 12.95 MB / 478.1 MB Notification: Performance of Early Inline: time 0.004368/0.04705, allocations: 4.542 MB / 0.6334 GB, free: 8.34 MB / 478.1 MB Notification: Performance of simplify1: time 0.0003398/0.04741, allocations: 323.5 kB / 0.6337 GB, free: 8.023 MB / 478.1 MB Notification: Performance of Alias: time 0.004773/0.05219, allocations: 4.63 MB / 0.6382 GB, free: 2.617 MB / 478.1 MB Notification: Performance of simplify2: time 0.0003348/0.05254, allocations: 287.6 kB / 0.6385 GB, free: 2.336 MB / 478.1 MB Notification: Performance of Events: time 0.0004596/0.05301, allocations: 488.8 kB / 0.6389 GB, free: 1.855 MB / 478.1 MB Notification: Performance of Detect States: time 0.0008284/0.05384, allocations: 0.8829 MB / 0.6398 GB, free: 0.9492 MB / 478.1 MB Notification: Performance of Partitioning: time 0.001321/0.05517, allocations: 1.23 MB / 0.641 GB, free: 15.63 MB / 494.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency sou_bc.terminal.v[1] could not be divided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) sou_bc.S = {sou_bc.terminal.v[1] * sou_bc.terminal.i[1] + sou_bc.terminal.v[2] * sou_bc.terminal.i[2], sou_bc.terminal.v[2] * sou_bc.terminal.i[1] - sou_bc.terminal.v[1] * sou_bc.terminal.i[2]} ($RES_BND_256) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (173/274) **************************** (1) [ALGB] (2) Real[2] sen_Y.terminal_n.v (2) [ALGB] (2) Real[2] sen_a.terminal_n.v (3) [ALGB] (1) Real[1] sen_ca.terminal_p.theta (4) [ALGB] (2) flow Real[2] sen_b.terminal_n.i (5) [ALGB] (2) flow Real[2] sen_c.terminal_n.i (6) [ALGB] (1) protected Real RL_b.X (start = 1.0) (7) [ALGB] (2) flow Real[2] sou_b.terminal.i (8) [ALGB] (1) Real sen_D.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_D.terminal_n.v) (9) [DER-] (1) Real[1] $DER.RL_tri.terminal.theta (10) [ALGB] (2) Real[2] sou_ca.terminal.v (11) [ALGB] (2) Real[2] RL_b.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_b.PhaseSystem.phasePowers_vi(RL_b.v, -RL_b.i) (12) [ALGB] (2) Real[2] sen_D.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_D.terminal_n.v, sen_D.terminal_n.i) (13) [ALGB] (1) Real sen_Y.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_Y.terminal_n.v) (14) [ALGB] (2) Real[2] sen_Y.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_Y.terminal_n.v, sen_Y.terminal_n.i) (15) [ALGB] (2) Real[2] sen_bc.terminal_p.v (16) [ALGB] (1) Real[1] sen_D.terminal_p.theta (17) [ALGB] (2) Real[2] sou_b.terminal.v (18) [ALGB] (1) Real sen_D.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_D.terminal_n.i) (19) [ALGB] (2) flow Real[2] sou_ca.terminal.i (20) [ALGB] (1) Real sen_Y.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_Y.terminal_n.i) (21) [DER-] (1) Real[1] $DER.RL_star.terminal.theta (22) [ALGB] (1) Real errorY = sqrt((sen_Y.S[2] - (sen_c.S[2] + sen_a.S[2] + sen_b.S[2])) ^ 2.0 + (sen_Y.S[1] - (sen_c.S[1] + sen_a.S[1] + sen_b.S[1])) ^ 2.0) (23) [ALGB] (2) flow Real[2] sen_bc.terminal_p.i (24) [DER-] (1) Real[1] $DER.RL_c.terminal.theta (25) [ALGB] (1) Real[1] sen_c.terminal_n.theta (26) [ALGB] (2) Real[2] RL_a.v = RL_a.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_a.PhaseSystem.phaseVoltages(RL_a.V_nominal, 0.0)) (27) [ALGB] (1) Real sen_a.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_a.terminal_n.v) (28) [ALGB] (2) Real[2] sen_a.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_a.terminal_n.v, sen_a.terminal_n.i) (29) [ALGB] (1) Real errorD = sqrt((sen_D.S[2] - (sen_ca.S[2] + sen_ab.S[2] + sen_bc.S[2])) ^ 2.0 + (sen_D.S[1] - (sen_ca.S[1] + sen_ab.S[1] + sen_bc.S[1])) ^ 2.0) (30) [ALGB] (2) Real[2] RL_a.i = RL_a.terminal.i (start = {0.0, 0.0}) (31) [ALGB] (2) Real[2] RL_b.terminal.v (32) [ALGB] (1) Real sen_a.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_a.terminal_n.i) (33) [ALGB] (1) protected Real RL_bc.omega (34) [ALGB] (2) Real[2] sou.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou.PhaseSystem.phasePowers_vi(sou.terminal.v, sou.terminal.i) (35) [ALGB] (1) Real[1] sou_b.terminal.theta (36) [ALGB] (2) flow Real[2] RL_b.terminal.i (37) [ALGB] (1) protected Real RL_c.omega (38) [ALGB] (1) protected Real RL_a.X (start = 1.0) (39) [ALGB] (2) Real[2] sou_bc.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_bc.PhaseSystem.phasePowers_vi(sou_bc.terminal.v, sou_bc.terminal.i) (40) [ALGB] (2) Real[2] RL_a.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_a.PhaseSystem.phasePowers_vi(RL_a.v, -RL_a.i) (41) [ALGB] (2) Real[2] RL_ab.terminal.v (42) [ALGB] (1) Real[1] sou_c.terminal.theta (43) [ALGB] (2) Real[2] sou_ab.terminal.v (44) [ALGB] (2) flow Real[2] RL_ab.terminal.i (45) [ALGB] (2) flow Real[2] sou_a.terminal.i (46) [ALGB] (2) flow Real[2] sou.terminal.i (47) [ALGB] (2) Real[2] sou_ab.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ab.PhaseSystem.phasePowers_vi(sou_ab.terminal.v, sou_ab.terminal.i) (48) [ALGB] (2) flow Real[2] sou_ab.terminal.i (49) [ALGB] (2) flow Real[2] sen_ab.terminal_p.i (50) [ALGB] (1) Real[1] sen_a.terminal_n.theta (51) [ALGB] (2) flow Real[2] sen_ca.terminal_p.i (52) [ALGB] (2) Real[2] RL_bc.terminal.v (53) [ALGB] (2) Real[2] sou_bc.terminal.v (54) [ALGB] (2) Real[2] sou_a.terminal.v (55) [ALGB] (2) Real[2] sou.terminal.v (56) [ALGB] (1) Real[1] sen_ca.terminal_n.theta (57) [ALGB] (2) Real[2] sou_c.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_c.PhaseSystem.phasePowers_vi(sou_c.terminal.v, sou_c.terminal.i) (58) [ALGB] (2) Real[2] sen_ab.terminal_p.v (59) [ALGB] (1) Real sen_ca.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_ca.terminal_n.v) (60) [ALGB] (2) Real[2] sen_ca.terminal_p.v (61) [ALGB] (2) flow Real[2] RL_bc.terminal.i (62) [ALGB] (2) Real[2] sen_ca.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_ca.terminal_n.v, sen_ca.terminal_n.i) (63) [ALGB] (2) flow Real[2] sen_Y.terminal_p.i (64) [ALGB] (2) flow Real[2] sen_a.terminal_p.i (65) [ALGB] (2) flow Real[2] sou_bc.terminal.i (66) [ALGB] (1) protected Real RL_b.omega (67) [ALGB] (2) flow Real[2] sen_D.terminal_n.i (68) [ALGB] (1) Real sou_a.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_a.PhaseSystem.phase(sou_a.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_a.PhaseSystem.phase(-sou_a.terminal.i) (69) [ALGB] (1) Real[1] sen_b.terminal_p.theta (70) [ALGB] (1) Real sen_ca.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_ca.terminal_n.i) (71) [ALGB] (1) Real[1] sen_bc.terminal_p.theta (72) [ALGB] (1) Real[1] sen_ab.terminal_p.theta (73) [ALGB] (2) Real[2] sen_Y.terminal_p.v (74) [ALGB] (2) Real[2] sen_a.terminal_p.v (75) [ALGB] (2) Real[2] RL_tri.v = RL_tri.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_tri.PhaseSystem.phaseVoltages(RL_tri.V_nominal, 0.0)) (76) [ALGB] (1) Real[1] sen_Y.terminal_n.theta (77) [DER-] (1) Real[1] $DER.RL_a.terminal.theta (78) [ALGB] (2) Real[2] sen_b.terminal_p.v (79) [ALGB] (2) Real[2] sen_c.terminal_p.v (80) [ALGB] (2) Real[2] RL_bc.v = RL_bc.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_bc.PhaseSystem.phaseVoltages(RL_bc.V_nominal, 0.0)) (81) [ALGB] (1) Real sou_c.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_c.PhaseSystem.phase(sou_c.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_c.PhaseSystem.phase(-sou_c.terminal.i) (82) [ALGB] (2) Real[2] sen_D.terminal_n.v (83) [ALGB] (2) Real[2] RL_c.terminal.v (84) [ALGB] (1) Real[1] sen_c.terminal_p.theta (85) [ALGB] (2) Real[2] RL_c1.v = RL_c1.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c1.PhaseSystem.phaseVoltages(RL_c1.V_nominal, 0.0)) (86) [ALGB] (2) Real[2] RL_tri.i = RL_tri.terminal.i (start = {0.0, 0.0}) (87) [ALGB] (2) Real[2] sen_bc.terminal_n.v (88) [ALGB] (2) flow Real[2] sen_b.terminal_p.i (89) [ALGB] (2) flow Real[2] sen_c.terminal_p.i (90) [ALGB] (2) Real[2] RL_bc.i = RL_bc.terminal.i (start = {0.0, 0.0}) (91) [ALGB] (2) flow Real[2] RL_c.terminal.i (92) [ALGB] (2) Real[2] RL_ab.v = RL_ab.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_ab.PhaseSystem.phaseVoltages(RL_ab.V_nominal, 0.0)) (93) [ALGB] (2) Real[2] RL_star.v = RL_star.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_star.PhaseSystem.phaseVoltages(RL_star.V_nominal, 0.0)) (94) [ALGB] (2) Real[2] RL_c1.terminal.v (95) [ALGB] (2) Real[2] RL_c1.i = RL_c1.terminal.i (start = {0.0, 0.0}) (96) [ALGB] (1) Real sou.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou.PhaseSystem.phase(sou.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou.PhaseSystem.phase(-sou.terminal.i) (97) [ALGB] (2) flow Real[2] sen_bc.terminal_n.i (98) [DER-] (1) Real[1] $DER.RL_bc.terminal.theta (99) [ALGB] (1) protected Real RL_tri.X (start = 1.0) (100) [ALGB] (1) Real[1] sou_ab.terminal.theta (101) [ALGB] (1) protected Real RL_ab.omega (102) [ALGB] (1) protected Real RL_bc.X (start = 1.0) (103) [ALGB] (2) Real[2] RL_ab.i = RL_ab.terminal.i (start = {0.0, 0.0}) (104) [ALGB] (2) Real[2] RL_star.i = RL_star.terminal.i (start = {0.0, 0.0}) (105) [ALGB] (2) Real[2] RL_tri.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_tri.PhaseSystem.phasePowers_vi(RL_tri.v, -RL_tri.i) (106) [ALGB] (2) flow Real[2] RL_star.terminal.i (107) [ALGB] (1) Real[1] sou_ca.terminal.theta (108) [ALGB] (2) flow Real[2] RL_c1.terminal.i (109) [ALGB] (2) Real[2] RL_bc.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_bc.PhaseSystem.phasePowers_vi(RL_bc.v, -RL_bc.i) (110) [ALGB] (2) Real[2] sou_b.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_b.PhaseSystem.phasePowers_vi(sou_b.terminal.v, sou_b.terminal.i) (111) [ALGB] (1) protected Real RL_a.omega (112) [ALGB] (1) Real sou_bc.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_bc.PhaseSystem.phase(sou_bc.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_bc.PhaseSystem.phase(-sou_bc.terminal.i) (113) [ALGB] (1) protected Real RL_c1.X (start = 1.0) (114) [ALGB] (2) Real[2] RL_c.v = RL_c.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c.PhaseSystem.phaseVoltages(RL_c.V_nominal, 0.0)) (115) [ALGB] (2) Real[2] RL_c1.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c1.PhaseSystem.phasePowers_vi(RL_c1.v, -RL_c1.i) (116) [ALGB] (2) Real[2] RL_star.terminal.v (117) [ALGB] (1) Real[1] sen_D.terminal_n.theta (118) [ALGB] (1) Real sen_c.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_c.terminal_n.v) (119) [ALGB] (1) protected Real RL_ab.X (start = 1.0) (120) [ALGB] (1) protected Real RL_star.X (start = 1.0) (121) [ALGB] (2) Real[2] sen_c.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_c.terminal_n.v, sen_c.terminal_n.i) (122) [ALGB] (2) Real[2] RL_ab.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_ab.PhaseSystem.phasePowers_vi(RL_ab.v, -RL_ab.i) (123) [ALGB] (2) Real[2] RL_star.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_star.PhaseSystem.phasePowers_vi(RL_star.v, -RL_star.i) (124) [ALGB] (2) Real[2] RL_c.i = RL_c.terminal.i (start = {0.0, 0.0}) (125) [ALGB] (2) flow Real[2] sou_c.terminal.i (126) [ALGB] (1) Real sen_c.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_c.terminal_n.i) (127) [ALGB] (1) Real[1] sou_bc.terminal.theta (128) [DER-] (1) Real[1] $DER.RL_c1.terminal.theta (129) [ALGB] (2) Real[2] sou_c.terminal.v (130) [ALGB] (1) Real sen_bc.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_bc.terminal_n.v) (131) [ALGB] (1) Real[1] sou.terminal.theta (132) [ALGB] (2) Real[2] sen_bc.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_bc.terminal_n.v, sen_bc.terminal_n.i) (133) [ALGB] (1) protected Real RL_c.X (start = 1.0) (134) [ALGB] (2) Real[2] RL_c.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_c.PhaseSystem.phasePowers_vi(RL_c.v, -RL_c.i) (135) [ALGB] (1) Real sou_ca.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ca.PhaseSystem.phase(sou_ca.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ca.PhaseSystem.phase(-sou_ca.terminal.i) (136) [ALGB] (1) Real[1] sou_a.terminal.theta (137) [ALGB] (1) protected Real RL_star.omega (138) [ALGB] (1) protected Real RL_tri.omega (139) [ALGB] (1) Real sen_bc.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_bc.terminal_n.i) (140) [ALGB] (2) flow Real[2] RL_tri.terminal.i (141) [ALGB] (1) Real sen_ab.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_ab.terminal_n.v) (142) [ALGB] (2) Real[2] sen_ab.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_ab.terminal_n.v, sen_ab.terminal_n.i) (143) [ALGB] (1) Real[1] sen_b.terminal_n.theta (144) [ALGB] (1) Real[1] sen_bc.terminal_n.theta (145) [ALGB] (1) Real[1] sen_ab.terminal_n.theta (146) [ALGB] (2) Real[2] sou_a.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_a.PhaseSystem.phasePowers_vi(sou_a.terminal.v, sou_a.terminal.i) (147) [ALGB] (1) Real[1] sen_Y.terminal_p.theta (148) [ALGB] (2) Real[2] RL_tri.terminal.v (149) [ALGB] (2) flow Real[2] sen_ab.terminal_n.i (150) [ALGB] (2) Real[2] RL_a.terminal.v (151) [ALGB] (1) Real sen_ab.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_ab.terminal_n.i) (152) [ALGB] (2) flow Real[2] sen_ca.terminal_n.i (153) [ALGB] (2) Real[2] RL_b.v = RL_b.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.RL_b.PhaseSystem.phaseVoltages(RL_b.V_nominal, 0.0)) (154) [ALGB] (1) protected Real RL_c1.omega (155) [ALGB] (1) Real sen_b.V = Buildings.Electrical.PhaseSystems.OnePhase.systemVoltage(sen_b.terminal_n.v) (156) [ALGB] (1) Real sou_ab.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ab.PhaseSystem.phase(sou_ab.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ab.PhaseSystem.phase(-sou_ab.terminal.i) (157) [ALGB] (2) Real[2] sou_ca.S = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_ca.PhaseSystem.phasePowers_vi(sou_ca.terminal.v, sou_ca.terminal.i) (158) [DER-] (1) Real[1] $DER.RL_b.terminal.theta (159) [ALGB] (2) Real[2] sen_b.S = Buildings.Electrical.PhaseSystems.OnePhase.phasePowers_vi(sen_b.terminal_n.v, sen_b.terminal_n.i) (160) [ALGB] (2) flow Real[2] sen_D.terminal_p.i (161) [DER-] (1) Real[1] $DER.RL_ab.terminal.theta (162) [ALGB] (2) Real[2] sen_ab.terminal_n.v (163) [ALGB] (2) flow Real[2] RL_a.terminal.i (164) [ALGB] (2) Real[2] sen_ca.terminal_n.v (165) [ALGB] (2) flow Real[2] sen_Y.terminal_n.i (166) [ALGB] (2) Real[2] RL_b.i = RL_b.terminal.i (start = {0.0, 0.0}) (167) [ALGB] (2) flow Real[2] sen_a.terminal_n.i (168) [ALGB] (1) Real sen_b.I = Buildings.Electrical.PhaseSystems.OnePhase.systemCurrent(sen_b.terminal_n.i) (169) [ALGB] (2) Real[2] sen_b.terminal_n.v (170) [ALGB] (2) Real[2] sen_c.terminal_n.v (171) [ALGB] (1) Real[1] sen_a.terminal_p.theta (172) [ALGB] (2) Real[2] sen_D.terminal_p.v (173) [ALGB] (1) Real sou_b.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_b.PhaseSystem.phase(sou_b.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Loads.Examples.ThreePhases.sou_b.PhaseSystem.phase(-sou_b.terminal.i) System Equations (176/274) **************************** (1) [ARRY] (1) sen_bc.terminal_n.theta = sen_bc.terminal_p.theta ($RES_SIM_204) (2) [SCAL] (1) sou_ab.phi = atan2(sou_ab.terminal.v[2], sou_ab.terminal.v[1]) - atan2((-sou_ab.terminal.i)[2], (-sou_ab.terminal.i)[1]) ($RES_BND_255) (3) [FOR-] (2) ($RES_SIM_205) (3) [----] for $i1 in 1:2 loop (3) [----] [SCAL] (1) -(sen_c.terminal_n.i[$i1] + sen_c.terminal_p.i[$i1]) = 0.0 ($RES_SIM_206) (3) [----] end for; (4) [ARRY] (2) sou_bc.S = {sou_bc.terminal.v[1] * sou_bc.terminal.i[1] + sou_bc.terminal.v[2] * sou_bc.terminal.i[2], sou_bc.terminal.v[2] * sou_bc.terminal.i[1] - sou_bc.terminal.v[1] * sou_bc.terminal.i[2]} ($RES_BND_256) (5) [SCAL] (1) sou_bc.phi = atan2(sou_bc.terminal.v[2], sou_bc.terminal.v[1]) - atan2((-sou_bc.terminal.i)[2], (-sou_bc.terminal.i)[1]) ($RES_BND_257) (6) [ARRY] (2) sen_c.terminal_n.v = sen_c.terminal_p.v ($RES_SIM_207) (7) [ARRY] (2) sou_ca.S = {sou_ca.terminal.v[1] * sou_ca.terminal.i[1] + sou_ca.terminal.v[2] * sou_ca.terminal.i[2], sou_ca.terminal.v[2] * sou_ca.terminal.i[1] - sou_ca.terminal.v[1] * sou_ca.terminal.i[2]} ($RES_BND_258) (8) [ARRY] (1) sen_c.terminal_n.theta = sen_c.terminal_p.theta ($RES_SIM_208) (9) [SCAL] (1) sou_ca.phi = atan2(sou_ca.terminal.v[2], sou_ca.terminal.v[1]) - atan2((-sou_ca.terminal.i)[2], (-sou_ca.terminal.i)[1]) ($RES_BND_259) (10) [FOR-] (2) ($RES_SIM_209) (10) [----] for $i1 in 1:2 loop (10) [----] [SCAL] (1) -(sen_b.terminal_n.i[$i1] + sen_b.terminal_p.i[$i1]) = 0.0 ($RES_SIM_210) (10) [----] end for; (11) [ARRY] (2) RL_star.terminal.v = {{RL_star.R, -RL_star.X} * RL_star.terminal.i, {RL_star.X, RL_star.R} * RL_star.terminal.i} ($RES_SIM_127) (12) [SCAL] (1) RL_star.X = RL_star.omega * RL_star.L ($RES_SIM_128) (13) [SCAL] (1) RL_star.omega = $DER.RL_star.terminal.theta[1] ($RES_SIM_129) (14) [ARRY] (2) RL_c1.terminal.v = {{RL_c1.R, -RL_c1.X} * RL_c1.terminal.i, {RL_c1.X, RL_c1.R} * RL_c1.terminal.i} ($RES_SIM_11) (15) [ARRY] (2) RL_ab.v = RL_ab.terminal.v ($RES_BND_260) (16) [SCAL] (1) RL_c1.X = RL_c1.omega * RL_c1.L ($RES_SIM_12) (17) [ARRY] (2) RL_ab.i = RL_ab.terminal.i ($RES_BND_261) (18) [SCAL] (1) RL_c1.omega = $DER.RL_c1.terminal.theta[1] ($RES_SIM_13) (19) [ARRY] (2) sen_b.terminal_n.v = sen_b.terminal_p.v ($RES_SIM_211) (20) [ARRY] (2) RL_ab.S = {RL_ab.v[1] * (-RL_ab.i)[1] + RL_ab.v[2] * (-RL_ab.i)[2], RL_ab.v[2] * (-RL_ab.i)[1] - RL_ab.v[1] * (-RL_ab.i)[2]} ($RES_BND_262) (21) [ARRY] (1) sen_b.terminal_n.theta = sen_b.terminal_p.theta ($RES_SIM_212) (22) [ARRY] (2) RL_bc.v = RL_bc.terminal.v ($RES_BND_263) (23) [FOR-] (2) ($RES_SIM_213) (23) [----] for $i1 in 1:2 loop (23) [----] [SCAL] (1) -(sen_D.terminal_n.i[$i1] + sen_D.terminal_p.i[$i1]) = 0.0 ($RES_SIM_214) (23) [----] end for; (24) [ARRY] (2) RL_bc.i = RL_bc.terminal.i ($RES_BND_264) (25) [ARRY] (2) RL_bc.S = {RL_bc.v[1] * (-RL_bc.i)[1] + RL_bc.v[2] * (-RL_bc.i)[2], RL_bc.v[2] * (-RL_bc.i)[1] - RL_bc.v[1] * (-RL_bc.i)[2]} ($RES_BND_265) (26) [ARRY] (2) sou.terminal.v = {sou.V * cos(sou.phiSou), sou.V * sin(sou.phiSou)} ($RES_SIM_130) (27) [ARRY] (2) sen_D.terminal_n.v = sen_D.terminal_p.v ($RES_SIM_215) (28) [ARRY] (2) RL_b.terminal.v = {{RL_b.R, -RL_b.X} * RL_b.terminal.i, {RL_b.X, RL_b.R} * RL_b.terminal.i} ($RES_SIM_90) (29) [ARRY] (2) RL_c1.v = RL_c1.terminal.v ($RES_BND_266) (30) [ARRY] (1) sen_D.terminal_n.theta = sen_D.terminal_p.theta ($RES_SIM_216) (31) [SCAL] (1) RL_b.X = RL_b.omega * RL_b.L ($RES_SIM_91) (32) [ARRY] (2) RL_c1.i = RL_c1.terminal.i ($RES_BND_267) (33) [FOR-] (2) ($RES_SIM_217) (33) [----] for $i1 in 1:2 loop (33) [----] [SCAL] (1) -(sen_Y.terminal_n.i[$i1] + sen_Y.terminal_p.i[$i1]) = 0.0 ($RES_SIM_218) (33) [----] end for; (34) [SCAL] (1) RL_b.omega = $DER.RL_b.terminal.theta[1] ($RES_SIM_92) (35) [SCAL] (1) sou.terminal.theta[1] = 6.283185307179586 * sou.f * time ($RES_SIM_132) (36) [ARRY] (2) RL_c1.S = {RL_c1.v[1] * (-RL_c1.i)[1] + RL_c1.v[2] * (-RL_c1.i)[2], RL_c1.v[2] * (-RL_c1.i)[1] - RL_c1.v[1] * (-RL_c1.i)[2]} ($RES_BND_268) (37) [FOR-] (2) ($RES_SIM_133) (37) [----] for $i1 in 1:2 loop (37) [----] [SCAL] (1) sen_ca.terminal_p.i[$i1] + RL_c1.terminal.i[$i1] = 0.0 ($RES_SIM_134) (37) [----] end for; (38) [SCAL] (1) sen_a.V = sen_a.terminal_n.v / ((sen_a.terminal_n.v * sen_a.terminal_n.v * (sen_a.terminal_n.v * sen_a.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_a.terminal_n.v) ($RES_BND_269) (39) [ARRY] (2) sen_Y.terminal_n.v = sen_Y.terminal_p.v ($RES_SIM_219) (40) [ARRY] (2) sen_ca.terminal_p.v = RL_c1.terminal.v ($RES_SIM_135) (41) [ARRY] (1) sen_ca.terminal_p.theta = RL_c1.terminal.theta ($RES_SIM_136) (42) [FOR-] (2) ($RES_SIM_137) (42) [----] for $i1 in 1:2 loop (42) [----] [SCAL] (1) sou_ca.terminal.i[$i1] + sen_ca.terminal_n.i[$i1] = 0.0 ($RES_SIM_138) (42) [----] end for; (43) [ARRY] (2) sou_ca.terminal.v = sen_ca.terminal_n.v ($RES_SIM_139) (44) [SCAL] (1) sen_a.I = sen_a.terminal_n.i / ((sen_a.terminal_n.i * sen_a.terminal_n.i * (sen_a.terminal_n.i * sen_a.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_a.terminal_n.i) ($RES_BND_270) (45) [ARRY] (1) sen_Y.terminal_n.theta = sen_Y.terminal_p.theta ($RES_SIM_220) (46) [ARRY] (2) sen_a.S = {sen_a.terminal_n.v[1] * sen_a.terminal_n.i[1] + sen_a.terminal_n.v[2] * sen_a.terminal_n.i[2], sen_a.terminal_n.v[2] * sen_a.terminal_n.i[1] - sen_a.terminal_n.v[1] * sen_a.terminal_n.i[2]} ($RES_BND_271) (47) [FOR-] (2) ($RES_SIM_221) (47) [----] for $i1 in 1:2 loop (47) [----] [SCAL] (1) -(sen_ab.terminal_n.i[$i1] + sen_ab.terminal_p.i[$i1]) = 0.0 ($RES_SIM_222) (47) [----] end for; (48) [SCAL] (1) sen_ab.V = sen_ab.terminal_n.v / ((sen_ab.terminal_n.v * sen_ab.terminal_n.v * (sen_ab.terminal_n.v * sen_ab.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_ab.terminal_n.v) ($RES_BND_272) (49) [SCAL] (1) sen_ab.I = sen_ab.terminal_n.i / ((sen_ab.terminal_n.i * sen_ab.terminal_n.i * (sen_ab.terminal_n.i * sen_ab.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_ab.terminal_n.i) ($RES_BND_273) (50) [ARRY] (2) sen_ab.terminal_n.v = sen_ab.terminal_p.v ($RES_SIM_223) (51) [ARRY] (2) RL_bc.terminal.v = {{RL_bc.R, -RL_bc.X} * RL_bc.terminal.i, {RL_bc.X, RL_bc.R} * RL_bc.terminal.i} ($RES_SIM_25) (52) [ARRY] (2) sen_ab.S = {sen_ab.terminal_n.v[1] * sen_ab.terminal_n.i[1] + sen_ab.terminal_n.v[2] * sen_ab.terminal_n.i[2], sen_ab.terminal_n.v[2] * sen_ab.terminal_n.i[1] - sen_ab.terminal_n.v[1] * sen_ab.terminal_n.i[2]} ($RES_BND_274) (53) [ARRY] (1) sen_ab.terminal_n.theta = sen_ab.terminal_p.theta ($RES_SIM_224) (54) [SCAL] (1) RL_bc.X = RL_bc.omega * RL_bc.L ($RES_SIM_26) (55) [SCAL] (1) sen_Y.V = sen_Y.terminal_n.v / ((sen_Y.terminal_n.v * sen_Y.terminal_n.v * (sen_Y.terminal_n.v * sen_Y.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_Y.terminal_n.v) ($RES_BND_275) (56) [FOR-] (2) ($RES_SIM_225) (56) [----] for $i1 in 1:2 loop (56) [----] [SCAL] (1) -(sen_a.terminal_n.i[$i1] + sen_a.terminal_p.i[$i1]) = 0.0 ($RES_SIM_226) (56) [----] end for; (57) [SCAL] (1) RL_bc.omega = $DER.RL_bc.terminal.theta[1] ($RES_SIM_27) (58) [ARRY] (1) sou_ca.terminal.theta = sen_ca.terminal_n.theta ($RES_SIM_140) (59) [SCAL] (1) sen_Y.I = sen_Y.terminal_n.i / ((sen_Y.terminal_n.i * sen_Y.terminal_n.i * (sen_Y.terminal_n.i * sen_Y.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_Y.terminal_n.i) ($RES_BND_276) (60) [ARRY] (2) sen_Y.S = {sen_Y.terminal_n.v[1] * sen_Y.terminal_n.i[1] + sen_Y.terminal_n.v[2] * sen_Y.terminal_n.i[2], sen_Y.terminal_n.v[2] * sen_Y.terminal_n.i[1] - sen_Y.terminal_n.v[1] * sen_Y.terminal_n.i[2]} ($RES_BND_277) (61) [FOR-] (2) ($RES_SIM_141) (61) [----] for $i1 in 1:2 loop (61) [----] [SCAL] (1) sen_bc.terminal_p.i[$i1] + RL_bc.terminal.i[$i1] = 0.0 ($RES_SIM_142) (61) [----] end for; (62) [SCAL] (1) sen_D.V = sen_D.terminal_n.v / ((sen_D.terminal_n.v * sen_D.terminal_n.v * (sen_D.terminal_n.v * sen_D.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_D.terminal_n.v) ($RES_BND_278) (63) [ARRY] (2) sen_a.terminal_n.v = sen_a.terminal_p.v ($RES_SIM_227) (64) [SCAL] (1) sen_D.I = sen_D.terminal_n.i / ((sen_D.terminal_n.i * sen_D.terminal_n.i * (sen_D.terminal_n.i * sen_D.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_D.terminal_n.i) ($RES_BND_279) (65) [ARRY] (1) sen_a.terminal_n.theta = sen_a.terminal_p.theta ($RES_SIM_228) (66) [ARRY] (2) sen_bc.terminal_p.v = RL_bc.terminal.v ($RES_SIM_143) (67) [ARRY] (1) sen_bc.terminal_p.theta = RL_bc.terminal.theta ($RES_SIM_144) (68) [FOR-] (2) ($RES_SIM_145) (68) [----] for $i1 in 1:2 loop (68) [----] [SCAL] (1) sou_bc.terminal.i[$i1] + sen_bc.terminal_n.i[$i1] = 0.0 ($RES_SIM_146) (68) [----] end for; (69) [ARRY] (2) sou_bc.terminal.v = sen_bc.terminal_n.v ($RES_SIM_147) (70) [ARRY] (1) sou_bc.terminal.theta = sen_bc.terminal_n.theta ($RES_SIM_148) (71) [FOR-] (2) ($RES_SIM_149) (71) [----] for $i1 in 1:2 loop (71) [----] [SCAL] (1) sen_c.terminal_p.i[$i1] + RL_c.terminal.i[$i1] = 0.0 ($RES_SIM_150) (71) [----] end for; (72) [ARRY] (2) sen_D.S = {sen_D.terminal_n.v[1] * sen_D.terminal_n.i[1] + sen_D.terminal_n.v[2] * sen_D.terminal_n.i[2], sen_D.terminal_n.v[2] * sen_D.terminal_n.i[1] - sen_D.terminal_n.v[1] * sen_D.terminal_n.i[2]} ($RES_BND_280) (73) [SCAL] (1) sen_b.V = sen_b.terminal_n.v / ((sen_b.terminal_n.v * sen_b.terminal_n.v * (sen_b.terminal_n.v * sen_b.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_b.terminal_n.v) ($RES_BND_281) (74) [SCAL] (1) sen_b.I = sen_b.terminal_n.i / ((sen_b.terminal_n.i * sen_b.terminal_n.i * (sen_b.terminal_n.i * sen_b.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_b.terminal_n.i) ($RES_BND_282) (75) [ARRY] (2) sen_b.S = {sen_b.terminal_n.v[1] * sen_b.terminal_n.i[1] + sen_b.terminal_n.v[2] * sen_b.terminal_n.i[2], sen_b.terminal_n.v[2] * sen_b.terminal_n.i[1] - sen_b.terminal_n.v[1] * sen_b.terminal_n.i[2]} ($RES_BND_283) (76) [SCAL] (1) sen_c.V = sen_c.terminal_n.v / ((sen_c.terminal_n.v * sen_c.terminal_n.v * (sen_c.terminal_n.v * sen_c.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_c.terminal_n.v) ($RES_BND_284) (77) [SCAL] (1) sen_c.I = sen_c.terminal_n.i / ((sen_c.terminal_n.i * sen_c.terminal_n.i * (sen_c.terminal_n.i * sen_c.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_c.terminal_n.i) ($RES_BND_285) (78) [ARRY] (2) sen_c.S = {sen_c.terminal_n.v[1] * sen_c.terminal_n.i[1] + sen_c.terminal_n.v[2] * sen_c.terminal_n.i[2], sen_c.terminal_n.v[2] * sen_c.terminal_n.i[1] - sen_c.terminal_n.v[1] * sen_c.terminal_n.i[2]} ($RES_BND_286) (79) [SCAL] (1) sen_bc.V = sen_bc.terminal_n.v / ((sen_bc.terminal_n.v * sen_bc.terminal_n.v * (sen_bc.terminal_n.v * sen_bc.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_bc.terminal_n.v) ($RES_BND_287) (80) [ARRY] (2) sen_c.terminal_p.v = RL_c.terminal.v ($RES_SIM_151) (81) [SCAL] (1) sen_bc.I = sen_bc.terminal_n.i / ((sen_bc.terminal_n.i * sen_bc.terminal_n.i * (sen_bc.terminal_n.i * sen_bc.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_bc.terminal_n.i) ($RES_BND_288) (82) [ARRY] (2) RL_ab.terminal.v = {{RL_ab.R, -RL_ab.X} * RL_ab.terminal.i, {RL_ab.X, RL_ab.R} * RL_ab.terminal.i} ($RES_SIM_39) (83) [ARRY] (1) sen_c.terminal_p.theta = RL_c.terminal.theta ($RES_SIM_152) (84) [ARRY] (2) sen_bc.S = {sen_bc.terminal_n.v[1] * sen_bc.terminal_n.i[1] + sen_bc.terminal_n.v[2] * sen_bc.terminal_n.i[2], sen_bc.terminal_n.v[2] * sen_bc.terminal_n.i[1] - sen_bc.terminal_n.v[1] * sen_bc.terminal_n.i[2]} ($RES_BND_289) (85) [FOR-] (2) ($RES_SIM_153) (85) [----] for $i1 in 1:2 loop (85) [----] [SCAL] (1) sou_c.terminal.i[$i1] + sen_c.terminal_n.i[$i1] = 0.0 ($RES_SIM_154) (85) [----] end for; (86) [ARRY] (2) sou_c.terminal.v = sen_c.terminal_n.v ($RES_SIM_155) (87) [ARRY] (1) sou_c.terminal.theta = sen_c.terminal_n.theta ($RES_SIM_156) (88) [FOR-] (2) ($RES_SIM_157) (88) [----] for $i1 in 1:2 loop (88) [----] [SCAL] (1) sen_b.terminal_p.i[$i1] + RL_b.terminal.i[$i1] = 0.0 ($RES_SIM_158) (88) [----] end for; (89) [ARRY] (2) sen_b.terminal_p.v = RL_b.terminal.v ($RES_SIM_159) (90) [SCAL] (1) RL_ab.X = RL_ab.omega * RL_ab.L ($RES_SIM_40) (91) [SCAL] (1) sen_ca.V = sen_ca.terminal_n.v / ((sen_ca.terminal_n.v * sen_ca.terminal_n.v * (sen_ca.terminal_n.v * sen_ca.terminal_n.v) + 1.0000000000000002e-10) ^ 0.25 * sen_ca.terminal_n.v) ($RES_BND_290) (92) [SCAL] (1) RL_ab.omega = $DER.RL_ab.terminal.theta[1] ($RES_SIM_41) (93) [SCAL] (1) sen_ca.I = sen_ca.terminal_n.i / ((sen_ca.terminal_n.i * sen_ca.terminal_n.i * (sen_ca.terminal_n.i * sen_ca.terminal_n.i) + 1.0000000000000002e-10) ^ 0.25 * sen_ca.terminal_n.i) ($RES_BND_291) (94) [ARRY] (2) sou_ca.terminal.v = {sou_ca.V * cos(sou_ca.phiSou), sou_ca.V * sin(sou_ca.phiSou)} ($RES_SIM_42) (95) [ARRY] (2) sen_ca.S = {sen_ca.terminal_n.v[1] * sen_ca.terminal_n.i[1] + sen_ca.terminal_n.v[2] * sen_ca.terminal_n.i[2], sen_ca.terminal_n.v[2] * sen_ca.terminal_n.i[1] - sen_ca.terminal_n.v[1] * sen_ca.terminal_n.i[2]} ($RES_BND_292) (96) [SCAL] (1) sou_ca.terminal.theta[1] = 6.283185307179586 * sou_ca.f * time ($RES_SIM_44) (97) [ARRY] (2) sou_bc.terminal.v = {sou_bc.V * cos(sou_bc.phiSou), sou_bc.V * sin(sou_bc.phiSou)} ($RES_SIM_45) (98) [SCAL] (1) sou_bc.terminal.theta[1] = 6.283185307179586 * sou_bc.f * time ($RES_SIM_47) (99) [ARRY] (1) sen_b.terminal_p.theta = RL_b.terminal.theta ($RES_SIM_160) (100) [ARRY] (2) sou_ab.terminal.v = {sou_ab.V * cos(sou_ab.phiSou), sou_ab.V * sin(sou_ab.phiSou)} ($RES_SIM_48) (101) [FOR-] (2) ($RES_SIM_161) (101) [----] for $i1 in 1:2 loop (101) [----] [SCAL] (1) sou_b.terminal.i[$i1] + sen_b.terminal_n.i[$i1] = 0.0 ($RES_SIM_162) (101) [----] end for; (102) [ARRY] (2) sou_b.terminal.v = sen_b.terminal_n.v ($RES_SIM_163) (103) [ARRY] (1) sou_b.terminal.theta = sen_b.terminal_n.theta ($RES_SIM_164) (104) [FOR-] (2) ($RES_SIM_165) (104) [----] for $i1 in 1:2 loop (104) [----] [SCAL] (1) sen_D.terminal_p.i[$i1] + RL_tri.terminal.i[$i1] = 0.0 ($RES_SIM_166) (104) [----] end for; (105) [ARRY] (2) sen_D.terminal_p.v = RL_tri.terminal.v ($RES_SIM_167) (106) [ARRY] (1) sen_D.terminal_p.theta = RL_tri.terminal.theta ($RES_SIM_168) (107) [FOR-] (2) ($RES_SIM_169) (107) [----] for $i1 in 1:2 loop (107) [----] [SCAL] (1) sen_Y.terminal_p.i[$i1] + RL_star.terminal.i[$i1] = 0.0 ($RES_SIM_170) (107) [----] end for; (108) [SCAL] (1) sou_ab.terminal.theta[1] = 6.283185307179586 * sou_ab.f * time ($RES_SIM_50) (109) [ARRY] (2) sen_Y.terminal_p.v = RL_star.terminal.v ($RES_SIM_171) (110) [ARRY] (1) sen_Y.terminal_p.theta = RL_star.terminal.theta ($RES_SIM_172) (111) [SCAL] (1) sen_D.terminal_n.i[2] + sou.terminal.i[2] + sen_Y.terminal_n.i[2] = 0.0 ($RES_SIM_173) (112) [SCAL] (1) sen_D.terminal_n.i[1] + sou.terminal.i[1] + sen_Y.terminal_n.i[1] = 0.0 ($RES_SIM_174) (113) [SCAL] (1) sou.terminal.v[2] = sen_Y.terminal_n.v[2] ($RES_SIM_175) (114) [SCAL] (1) sou.terminal.v[2] = sen_D.terminal_n.v[2] ($RES_SIM_176) (115) [SCAL] (1) sou.terminal.v[1] = sen_Y.terminal_n.v[1] ($RES_SIM_177) (116) [SCAL] (1) sou.terminal.v[1] = sen_D.terminal_n.v[1] ($RES_SIM_178) (117) [SCAL] (1) sou.terminal.theta[1] = sen_Y.terminal_n.theta[1] ($RES_SIM_179) (118) [ARRY] (2) sou.S = {sou.terminal.v[1] * sou.terminal.i[1] + sou.terminal.v[2] * sou.terminal.i[2], sou.terminal.v[2] * sou.terminal.i[1] - sou.terminal.v[1] * sou.terminal.i[2]} ($RES_BND_231) (119) [SCAL] (1) sou.phi = atan2(sou.terminal.v[2], sou.terminal.v[1]) - atan2((-sou.terminal.i)[2], (-sou.terminal.i)[1]) ($RES_BND_232) (120) [ARRY] (2) RL_star.v = RL_star.terminal.v ($RES_BND_233) (121) [ARRY] (2) RL_star.i = RL_star.terminal.i ($RES_BND_234) (122) [ARRY] (2) RL_star.S = {RL_star.v[1] * (-RL_star.i)[1] + RL_star.v[2] * (-RL_star.i)[2], RL_star.v[2] * (-RL_star.i)[1] - RL_star.v[1] * (-RL_star.i)[2]} ($RES_BND_235) (123) [ARRY] (2) sou_a.S = {sou_a.terminal.v[1] * sou_a.terminal.i[1] + sou_a.terminal.v[2] * sou_a.terminal.i[2], sou_a.terminal.v[2] * sou_a.terminal.i[1] - sou_a.terminal.v[1] * sou_a.terminal.i[2]} ($RES_BND_236) (124) [SCAL] (1) sou_a.phi = atan2(sou_a.terminal.v[2], sou_a.terminal.v[1]) - atan2((-sou_a.terminal.i)[2], (-sou_a.terminal.i)[1]) ($RES_BND_237) (125) [ARRY] (2) RL_tri.terminal.v = {{RL_tri.R / 3.0, -RL_tri.X / 3.0} * RL_tri.terminal.i, {RL_tri.X / 3.0, RL_tri.R / 3.0} * RL_tri.terminal.i} ($RES_SIM_62) (126) [ARRY] (2) sou_b.S = {sou_b.terminal.v[1] * sou_b.terminal.i[1] + sou_b.terminal.v[2] * sou_b.terminal.i[2], sou_b.terminal.v[2] * sou_b.terminal.i[1] - sou_b.terminal.v[1] * sou_b.terminal.i[2]} ($RES_BND_238) (127) [SCAL] (1) RL_tri.X = RL_tri.omega * RL_tri.L ($RES_SIM_63) (128) [SCAL] (1) sou_b.phi = atan2(sou_b.terminal.v[2], sou_b.terminal.v[1]) - atan2((-sou_b.terminal.i)[2], (-sou_b.terminal.i)[1]) ($RES_BND_239) (129) [SCAL] (1) RL_tri.omega = $DER.RL_tri.terminal.theta[1] ($RES_SIM_64) (130) [ARRY] (2) RL_a.terminal.v = {{RL_a.R, -RL_a.X} * RL_a.terminal.i, {RL_a.X, RL_a.R} * RL_a.terminal.i} ($RES_SIM_104) (131) [SCAL] (1) RL_a.X = RL_a.omega * RL_a.L ($RES_SIM_105) (132) [SCAL] (1) RL_a.omega = $DER.RL_a.terminal.theta[1] ($RES_SIM_106) (133) [SCAL] (1) sou.terminal.theta[1] = sen_D.terminal_n.theta[1] ($RES_SIM_180) (134) [ARRY] (2) sou_c.terminal.v = {sou_c.V * cos(sou_c.phiSou), sou_c.V * sin(sou_c.phiSou)} ($RES_SIM_107) (135) [FOR-] (2) ($RES_SIM_181) (135) [----] for $i1 in 1:2 loop (135) [----] [SCAL] (1) sen_ab.terminal_p.i[$i1] + RL_ab.terminal.i[$i1] = 0.0 ($RES_SIM_182) (135) [----] end for; (136) [SCAL] (1) sou_c.terminal.theta[1] = 6.283185307179586 * sou_c.f * time ($RES_SIM_109) (137) [ARRY] (2) sen_ab.terminal_p.v = RL_ab.terminal.v ($RES_SIM_183) (138) [ARRY] (1) sen_ab.terminal_p.theta = RL_ab.terminal.theta ($RES_SIM_184) (139) [FOR-] (2) ($RES_SIM_185) (139) [----] for $i1 in 1:2 loop (139) [----] [SCAL] (1) sou_ab.terminal.i[$i1] + sen_ab.terminal_n.i[$i1] = 0.0 ($RES_SIM_186) (139) [----] end for; (140) [ARRY] (2) sou_ab.terminal.v = sen_ab.terminal_n.v ($RES_SIM_187) (141) [ARRY] (1) sou_ab.terminal.theta = sen_ab.terminal_n.theta ($RES_SIM_188) (142) [FOR-] (2) ($RES_SIM_189) (142) [----] for $i1 in 1:2 loop (142) [----] [SCAL] (1) sen_a.terminal_p.i[$i1] + RL_a.terminal.i[$i1] = 0.0 ($RES_SIM_190) (142) [----] end for; (143) [ARRY] (2) sou_c.S = {sou_c.terminal.v[1] * sou_c.terminal.i[1] + sou_c.terminal.v[2] * sou_c.terminal.i[2], sou_c.terminal.v[2] * sou_c.terminal.i[1] - sou_c.terminal.v[1] * sou_c.terminal.i[2]} ($RES_BND_240) (144) [SCAL] (1) sou_c.phi = atan2(sou_c.terminal.v[2], sou_c.terminal.v[1]) - atan2((-sou_c.terminal.i)[2], (-sou_c.terminal.i)[1]) ($RES_BND_241) (145) [ARRY] (2) RL_a.v = RL_a.terminal.v ($RES_BND_242) (146) [ARRY] (2) RL_a.i = RL_a.terminal.i ($RES_BND_243) (147) [ARRY] (2) RL_a.S = {RL_a.v[1] * (-RL_a.i)[1] + RL_a.v[2] * (-RL_a.i)[2], RL_a.v[2] * (-RL_a.i)[1] - RL_a.v[1] * (-RL_a.i)[2]} ($RES_BND_244) (148) [ARRY] (2) RL_b.v = RL_b.terminal.v ($RES_BND_245) (149) [ARRY] (2) sou_b.terminal.v = {sou_b.V * cos(sou_b.phiSou), sou_b.V * sin(sou_b.phiSou)} ($RES_SIM_110) (150) [ARRY] (2) RL_b.i = RL_b.terminal.i ($RES_BND_246) (151) [ARRY] (2) RL_b.S = {RL_b.v[1] * (-RL_b.i)[1] + RL_b.v[2] * (-RL_b.i)[2], RL_b.v[2] * (-RL_b.i)[1] - RL_b.v[1] * (-RL_b.i)[2]} ($RES_BND_247) (152) [SCAL] (1) sou_b.terminal.theta[1] = 6.283185307179586 * sou_b.f * time ($RES_SIM_112) (153) [ARRY] (2) RL_c.v = RL_c.terminal.v ($RES_BND_248) (154) [ARRY] (2) sou_a.terminal.v = {sou_a.V * cos(sou_a.phiSou), sou_a.V * sin(sou_a.phiSou)} ($RES_SIM_113) (155) [ARRY] (2) RL_c.i = RL_c.terminal.i ($RES_BND_249) (156) [SCAL] (1) sou_a.terminal.theta[1] = 6.283185307179586 * sou_a.f * time ($RES_SIM_115) (157) [ARRY] (2) RL_c.terminal.v = {{RL_c.R, -RL_c.X} * RL_c.terminal.i, {RL_c.X, RL_c.R} * RL_c.terminal.i} ($RES_SIM_76) (158) [SCAL] (1) RL_c.X = RL_c.omega * RL_c.L ($RES_SIM_77) (159) [SCAL] (1) errorD = sqrt((sen_D.S[2] - (sen_ca.S[2] + sen_ab.S[2] + sen_bc.S[2])) ^ 2.0 + (sen_D.S[1] - (sen_ca.S[1] + sen_ab.S[1] + sen_bc.S[1])) ^ 2.0) ($RES_$AUX_294) (160) [SCAL] (1) RL_c.omega = $DER.RL_c.terminal.theta[1] ($RES_SIM_78) (161) [ARRY] (2) sen_a.terminal_p.v = RL_a.terminal.v ($RES_SIM_191) (162) [SCAL] (1) errorY = sqrt((sen_Y.S[2] - (sen_c.S[2] + sen_a.S[2] + sen_b.S[2])) ^ 2.0 + (sen_Y.S[1] - (sen_c.S[1] + sen_a.S[1] + sen_b.S[1])) ^ 2.0) ($RES_$AUX_293) (163) [ARRY] (1) sen_a.terminal_p.theta = RL_a.terminal.theta ($RES_SIM_192) (164) [FOR-] (2) ($RES_SIM_193) (164) [----] for $i1 in 1:2 loop (164) [----] [SCAL] (1) sou_a.terminal.i[$i1] + sen_a.terminal_n.i[$i1] = 0.0 ($RES_SIM_194) (164) [----] end for; (165) [ARRY] (2) sou_a.terminal.v = sen_a.terminal_n.v ($RES_SIM_195) (166) [ARRY] (1) sou_a.terminal.theta = sen_a.terminal_n.theta ($RES_SIM_196) (167) [FOR-] (2) ($RES_SIM_197) (167) [----] for $i1 in 1:2 loop (167) [----] [SCAL] (1) -(sen_ca.terminal_n.i[$i1] + sen_ca.terminal_p.i[$i1]) = 0.0 ($RES_SIM_198) (167) [----] end for; (168) [ARRY] (2) sen_ca.terminal_n.v = sen_ca.terminal_p.v ($RES_SIM_199) (169) [ARRY] (2) RL_c.S = {RL_c.v[1] * (-RL_c.i)[1] + RL_c.v[2] * (-RL_c.i)[2], RL_c.v[2] * (-RL_c.i)[1] - RL_c.v[1] * (-RL_c.i)[2]} ($RES_BND_250) (170) [ARRY] (1) sen_ca.terminal_n.theta = sen_ca.terminal_p.theta ($RES_SIM_200) (171) [ARRY] (2) RL_tri.v = RL_tri.terminal.v ($RES_BND_251) (172) [FOR-] (2) ($RES_SIM_201) (172) [----] for $i1 in 1:2 loop (172) [----] [SCAL] (1) -(sen_bc.terminal_n.i[$i1] + sen_bc.terminal_p.i[$i1]) = 0.0 ($RES_SIM_202) (172) [----] end for; (173) [ARRY] (2) RL_tri.i = RL_tri.terminal.i ($RES_BND_252) (174) [ARRY] (2) RL_tri.S = {RL_tri.v[1] * (-RL_tri.i)[1] + RL_tri.v[2] * (-RL_tri.i)[2], RL_tri.v[2] * (-RL_tri.i)[1] - RL_tri.v[1] * (-RL_tri.i)[2]} ($RES_BND_253) (175) [ARRY] (2) sen_bc.terminal_n.v = sen_bc.terminal_p.v ($RES_SIM_203) (176) [ARRY] (2) sou_ab.S = {sou_ab.terminal.v[1] * sou_ab.terminal.i[1] + sou_ab.terminal.v[2] * sou_ab.terminal.i[2], sou_ab.terminal.v[2] * sou_ab.terminal.i[1] - sou_ab.terminal.v[1] * sou_ab.terminal.i[2]} ($RES_BND_254)