Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr Buildings_3.0.0_Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Buildings 3.0.0/package.mo", uses=false) Using package Buildings with version 3.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Buildings 3.0.0/package.mo) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Using package Modelica_StateGraph2 with version 2.0.2 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo) Running command: translateModel(Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Buildings_3.0.0_Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R") translateModel(Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R,tolerance=1e-06,outputFormat="empty",numberOfIntervals=5000,variableFilter="",fileNamePrefix="Buildings_3.0.0_Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R") [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo:257:38-257:110:writable] Warning: The file was not encoded in UTF-8: "

An important practical aspect of state machines is the abilit...". Defaulting to 7-bit ASCII with unknown characters replaced by '?'. To change encoding when loading a file: loadFile(encoding="ISO-XXXX-YY"). To change it in a package: add a file package.encoding at the top-level. Note: The Modelica Language Specification only allows files encoded in UTF-8. [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo:761:36-761:108:writable] Warning: The file was not encoded in UTF-8: "

The Modelica_StateGraph2 library is described in detail in (O...". Defaulting to 7-bit ASCII with unknown characters replaced by '?'. To change encoding when loading a file: loadFile(encoding="ISO-XXXX-YY"). To change it in a package: add a file package.encoding at the top-level. Note: The Modelica Language Specification only allows files encoded in UTF-8. [/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica_StateGraph2 2.0.2/package.mo:1435:36-1435:108:writable] Warning: The file was not encoded in UTF-8: "

Main Authors:
SCode: time 2.476e-05/2.476e-05, allocations: 5.172 kB / 0.5923 GB, free: 18.62 MB / 446.1 MB Notification: Performance of NFInst.instantiate(Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R): time 0.006087/0.006121, allocations: 6.686 MB / 0.5988 GB, free: 12.18 MB / 446.1 MB Notification: Performance of NFInst.instExpressions: time 0.003986/0.01012, allocations: 3.274 MB / 0.602 GB, free: 8.898 MB / 446.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0002632/0.0104, allocations: 27.81 kB / 0.602 GB, free: 8.871 MB / 446.1 MB Notification: Performance of NFTyping.typeComponents: time 0.001907/0.01231, allocations: 0.953 MB / 0.603 GB, free: 7.914 MB / 446.1 MB Notification: Performance of NFTyping.typeBindings: time 0.0009019/0.01329, allocations: 0.5363 MB / 0.6035 GB, free: 7.375 MB / 446.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.0007933/0.01409, allocations: 446 kB / 0.6039 GB, free: 6.941 MB / 446.1 MB Notification: Performance of NFFlatten.flatten: time 0.0008139/0.01492, allocations: 1.345 MB / 0.6052 GB, free: 5.594 MB / 446.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0006318/0.01556, allocations: 0.6101 MB / 0.6058 GB, free: 4.98 MB / 446.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.0003371/0.0159, allocations: 470.2 kB / 0.6063 GB, free: 4.52 MB / 446.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.0003938/0.01631, allocations: 442.1 kB / 0.6067 GB, free: 4.086 MB / 446.1 MB Notification: Performance of NFPackage.collectConstants: time 5.977e-05/0.01638, allocations: 56 kB / 0.6067 GB, free: 4.031 MB / 446.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.0004145/0.0168, allocations: 331.3 kB / 0.607 GB, free: 3.707 MB / 446.1 MB Notification: Performance of combineBinaries: time 0.0005757/0.01738, allocations: 1.256 MB / 0.6083 GB, free: 2.438 MB / 446.1 MB Notification: Performance of replaceArrayConstructors: time 0.0002809/0.01767, allocations: 0.8229 MB / 0.6091 GB, free: 1.609 MB / 446.1 MB Notification: Performance of NFVerifyModel.verify: time 9.312e-05/0.01777, allocations: 131.6 kB / 0.6092 GB, free: 1.48 MB / 446.1 MB Notification: Performance of FrontEnd: time 5.698e-05/0.01783, allocations: 19.94 kB / 0.6092 GB, free: 1.461 MB / 446.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 179 (141) * Number of variables: 179 (132) Notification: Performance of Bindings: time 0.002361/0.0202, allocations: 3.294 MB / 0.6124 GB, free: 14.02 MB / 462.1 MB Notification: Performance of FunctionAlias: time 0.0002589/0.02046, allocations: 259.6 kB / 0.6127 GB, free: 13.75 MB / 462.1 MB Notification: Performance of Early Inline: time 0.001744/0.02222, allocations: 1.924 MB / 0.6146 GB, free: 11.79 MB / 462.1 MB Notification: Performance of simplify1: time 0.0001477/0.02237, allocations: 155.8 kB / 0.6147 GB, free: 11.63 MB / 462.1 MB Notification: Performance of Alias: time 0.002186/0.02457, allocations: 2.269 MB / 0.6169 GB, free: 8.961 MB / 462.1 MB Notification: Performance of simplify2: time 0.0001294/0.02471, allocations: 147.7 kB / 0.6171 GB, free: 8.816 MB / 462.1 MB Notification: Performance of Events: time 0.0002255/0.02494, allocations: 199.6 kB / 0.6173 GB, free: 8.621 MB / 462.1 MB Notification: Performance of Detect States: time 0.0005069/0.02546, allocations: 460.5 kB / 0.6177 GB, free: 8.156 MB / 462.1 MB Notification: Performance of Partitioning: time 0.0006508/0.02612, allocations: 0.644 MB / 0.6183 GB, free: 7.473 MB / 462.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency R1.v[1] could not be divided by the body size 2 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (2) R1.S = {R1.v[1] * (-R1.i)[1] + R1.v[2] * (-R1.i)[2], R1.v[2] * (-R1.i)[1] - R1.v[1] * (-R1.i)[2]} ($RES_BND_145) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (97/162) *************************** (1) [ALGB] (2) Real[2] Rline_2b.terminal_n.v (2) [ALGB] (2) flow Real[2] Rline_3a.terminal_n.i (3) [ALGB] (2) Real[2] E.terminal.v (4) [ALGB] (1) Real[1] Rline_3b.terminal_n.theta (5) [ALGB] (1) protected Real R2.X (start = 1.0) (6) [ALGB] (1) Real[1] Rline_3a.terminal_p.theta (7) [ALGB] (1) Real[1] Rline_2b.terminal_n.theta (8) [ALGB] (1) Real[1] Rline_2a.terminal_p.theta (9) [ALGB] (2) Real[2] R2.S = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.R2.PhaseSystem.phasePowers_vi(R2.v, -R2.i) (10) [ALGB] (1) protected Real sc_load.X (start = 1.0) (11) [ALGB] (2) Real[2] R3.terminal.v (12) [ALGB] (1) Real Rline_3a.LossPower (13) [ALGB] (2) flow Real[2] Rline_2b.terminal_n.i (14) [ALGB] (2) Real[2] Rline_3a.terminal_n.v (15) [DER-] (1) Real[1] $DER.R2.terminal.theta (16) [ALGB] (2) Real[2] sc_load.S = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.sc_load.PhaseSystem.phasePowers_vi(sc_load.v, -sc_load.i) (17) [ALGB] (1) Real[1] Rline_sc.terminal_p.theta (18) [ALGB] (2) flow Real[2] Rline_3a.terminal_p.i (19) [ALGB] (1) Real Rline_3b.R_actual (20) [ALGB] (2) flow Real[2] R3.terminal.i (21) [ALGB] (2) Real[2] E.S = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.E.PhaseSystem.phasePowers_vi(E.terminal.v, E.terminal.i) (22) [ALGB] (2) Real[2] R3.v = R3.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.R3.PhaseSystem.phaseVoltages(R3.V_nominal, 0.0)) (23) [ALGB] (1) Real[1] Rline_1.terminal_p.theta (24) [ALGB] (1) protected Real sc_load.omega (25) [ALGB] (1) Real Rline_2b.LossPower (26) [ALGB] (2) Real[2] Rline_3a.terminal_p.v (27) [ALGB] (1) Real[1] Rline_3b.terminal_p.theta (28) [ALGB] (1) Real Rline_2a.R_actual (29) [ALGB] (1) Real[1] E.terminal.theta (30) [ALGB] (2) Real[2] R2.terminal.v (31) [ALGB] (1) Real[1] Rline_2b.terminal_p.theta (32) [ALGB] (2) Real[2] R3.i = R3.terminal.i (start = {0.0, 0.0}) (33) [ALGB] (2) Real[2] Rline_2a.terminal_p.v (34) [ALGB] (4) Real[2, 2] $FUN_6 (35) [ALGB] (1) Real Rline_sc.R_actual (36) [ALGB] (4) Real[2, 2] $FUN_5 (37) [ALGB] (4) Real[2, 2] $FUN_4 (38) [ALGB] (4) Real[2, 2] $FUN_3 (39) [ALGB] (4) Real[2, 2] $FUN_2 (40) [ALGB] (1) Real Rline_1.LossPower (41) [ALGB] (4) Real[2, 2] $FUN_1 (42) [ALGB] (2) Real[2] R1.v = R1.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.R1.PhaseSystem.phaseVoltages(R1.V_nominal, 0.0)) (43) [ALGB] (1) protected Real R3.omega (44) [ALGB] (1) Real[1] Rline_sc.terminal_n.theta (45) [ALGB] (2) flow Real[2] R2.terminal.i (46) [ALGB] (2) flow Real[2] Rline_2a.terminal_p.i (47) [ALGB] (2) Real[2] Rline_sc.terminal_p.v (48) [ALGB] (1) Real Rline_sc.LossPower (49) [ALGB] (1) protected Real R3.X (start = 1.0) (50) [ALGB] (1) Real Rline_3b.LossPower (51) [ALGB] (2) Real[2] R1.i = R1.terminal.i (start = {0.0, 0.0}) (52) [ALGB] (2) Real[2] Rline_2a.terminal_n.v (53) [ALGB] (2) flow Real[2] Rline_3b.terminal_n.i (54) [ALGB] (2) flow Real[2] Rline_1.terminal_n.i (55) [ALGB] (2) Real[2] R3.S = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.R3.PhaseSystem.phasePowers_vi(R3.v, -R3.i) (56) [ALGB] (1) protected Real R2.omega (57) [ALGB] (2) Real[2] R1.terminal.v (58) [ALGB] (2) flow Real[2] Rline_sc.terminal_p.i (59) [ALGB] (2) flow Real[2] Rline_2a.terminal_n.i (60) [ALGB] (2) Real[2] Rline_3b.terminal_n.v (61) [ALGB] (1) Real Rline_1.R_actual (62) [ALGB] (2) Real[2] Rline_1.terminal_n.v (63) [ALGB] (2) Real[2] Rline_sc.terminal_n.v (64) [ALGB] (1) protected Real R1.X (start = 1.0) (65) [ALGB] (2) flow Real[2] R1.terminal.i (66) [ALGB] (2) flow Real[2] Rline_3b.terminal_p.i (67) [DER-] (1) Real[1] $DER.R3.terminal.theta (68) [ALGB] (2) flow Real[2] sc_load.terminal.i (69) [ALGB] (1) protected Real R1.omega (70) [ALGB] (2) flow Real[2] Rline_1.terminal_p.i (71) [ALGB] (2) Real[2] R1.S = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.R1.PhaseSystem.phasePowers_vi(R1.v, -R1.i) (72) [ALGB] (1) Real Rline_3a.R_actual (73) [ALGB] (2) flow Real[2] Rline_sc.terminal_n.i (74) [ALGB] (2) Real[2] Rline_3b.terminal_p.v (75) [ALGB] (2) Real[2] sc_load.terminal.v (76) [ALGB] (2) Real[2] Rline_1.terminal_p.v (77) [DISC] (1) Boolean $SEV_5 (78) [DISC] (1) Boolean $SEV_4 (79) [DISC] (1) Boolean $SEV_3 (80) [DISC] (1) Boolean $SEV_2 (81) [DISC] (1) Boolean $SEV_1 (82) [ALGB] (1) Real Rline_2b.R_actual (83) [DISC] (1) Boolean $SEV_0 (84) [ALGB] (1) Real[1] Rline_3a.terminal_n.theta (85) [ALGB] (2) Real[2] R2.v = R2.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.R2.PhaseSystem.phaseVoltages(R2.V_nominal, 0.0)) (86) [ALGB] (1) Real[1] Rline_2a.terminal_n.theta (87) [ALGB] (2) Real[2] sc_load.v = sc_load.terminal.v (start = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.sc_load.PhaseSystem.phaseVoltages(sc_load.V_nominal, 0.0)) (88) [ALGB] (2) Real[2] Rline_2b.terminal_p.v (89) [ALGB] (1) Real Rline_2a.LossPower (90) [DER-] (1) Real[1] $DER.R1.terminal.theta (91) [ALGB] (2) Real[2] R2.i = R2.terminal.i (start = {0.0, 0.0}) (92) [DER-] (1) Real[1] $DER.sc_load.terminal.theta (93) [ALGB] (2) flow Real[2] E.terminal.i (94) [ALGB] (2) Real[2] sc_load.i = sc_load.terminal.i (start = {0.0, 0.0}) (95) [ALGB] (2) flow Real[2] Rline_2b.terminal_p.i (96) [ALGB] (1) Real[1] Rline_1.terminal_n.theta (97) [ALGB] (1) Real E.phi = Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.E.PhaseSystem.phase(E.terminal.v) - Buildings.Electrical.AC.ThreePhasesBalanced.Lines.Examples.ACLine_R.E.PhaseSystem.phase(-E.terminal.i) System Equations (106/162) **************************** (1) [SCAL] (1) E.terminal.v[1] = Rline_3b.terminal_n.v[1] ($RES_SIM_132) (2) [ARRY] (2) Rline_2b.terminal_p.i = -Rline_2b.terminal_n.i ($RES_SIM_15) (3) [ARRY] (2) R1.S = {R1.v[1] * (-R1.i)[1] + R1.v[2] * (-R1.i)[2], R1.v[2] * (-R1.i)[1] - R1.v[1] * (-R1.i)[2]} ($RES_BND_145) (4) [FOR-] (2) ($RES_SIM_133) (4) [----] for $i1 in 1:2 loop (4) [----] [SCAL] (1) Rline_sc.terminal_p.i[$i1] + sc_load.terminal.i[$i1] = 0.0 ($RES_SIM_134) (4) [----] end for; (5) [SCAL] (1) Rline_2b.R_actual = ((Rline_2b.M + ((-273.15) + Rline_2b.T)) * Rline_2b.R) / (Rline_2b.M + ((-273.15) + Rline_2b.T_ref)) ($RES_SIM_16) (6) [ARRY] (2) R2.v = R2.terminal.v ($RES_BND_146) (7) [ARRY] (2) R2.i = R2.terminal.i ($RES_BND_147) (8) [ARRY] (2) Rline_sc.terminal_p.v = sc_load.terminal.v ($RES_SIM_135) (9) [ARRY] (2) sc_load.terminal.v = {{sc_load.R, -sc_load.X} * sc_load.terminal.i, {sc_load.X, sc_load.R} * sc_load.terminal.i} ($RES_SIM_53) (10) [ARRY] (1) Rline_2b.terminal_p.theta = Rline_2b.terminal_n.theta ($RES_SIM_18) (11) [ARRY] (2) R2.S = {R2.v[1] * (-R2.i)[1] + R2.v[2] * (-R2.i)[2], R2.v[2] * (-R2.i)[1] - R2.v[1] * (-R2.i)[2]} ($RES_BND_148) (12) [ARRY] (1) Rline_sc.terminal_p.theta = sc_load.terminal.theta ($RES_SIM_136) (13) [SCAL] (1) sc_load.X = sc_load.omega * sc_load.L ($RES_SIM_54) (14) [SCAL] (1) Rline_2b.LossPower = Rline_2b.R_actual * (Rline_2b.terminal_p.i[1] ^ 2.0 + Rline_2b.terminal_p.i[2] ^ 2.0) ($RES_SIM_19) (15) [ARRY] (2) R3.v = R3.terminal.v ($RES_BND_149) (16) [SCAL] (1) E.terminal.theta[1] = Rline_sc.terminal_n.theta[1] ($RES_SIM_137) (17) [SCAL] (1) sc_load.omega = $DER.sc_load.terminal.theta[1] ($RES_SIM_55) (18) [SCAL] (1) E.terminal.theta[1] = Rline_1.terminal_n.theta[1] ($RES_SIM_138) (19) [SCAL] (1) E.terminal.theta[1] = Rline_2a.terminal_n.theta[1] ($RES_SIM_139) (20) [ARRY] (2) R1.terminal.v = {{R1.R, -R1.X} * R1.terminal.i, {R1.X, R1.R} * R1.terminal.i} ($RES_SIM_95) (21) [SCAL] (1) R1.X = R1.omega * R1.L ($RES_SIM_96) (22) [SCAL] (1) R1.omega = $DER.R1.terminal.theta[1] ($RES_SIM_97) (23) [ARRY] (2) E.terminal.v = {E.V * cos(E.phiSou), E.V * sin(E.phiSou)} ($RES_SIM_98) (24) [SCAL] (1) E.terminal.theta[1] = 6.283185307179586 * E.f * time ($RES_SIM_100) (25) [SCAL] (1) Rline_3b.terminal_p.i[2] + R3.terminal.i[2] + Rline_3a.terminal_p.i[2] = 0.0 ($RES_SIM_101) (26) [SCAL] (1) Rline_3b.terminal_p.i[1] + R3.terminal.i[1] + Rline_3a.terminal_p.i[1] = 0.0 ($RES_SIM_102) (27) [ARRY] (2) Rline_2b.terminal_p.v - Rline_2b.terminal_n.v = Rline_2b.terminal_p.i * $FUN_4 ($RES_SIM_20) (28) [ARRY] (2) R3.i = R3.terminal.i ($RES_BND_150) (29) [SCAL] (1) Rline_3b.terminal_p.v[2] = Rline_3a.terminal_p.v[2] ($RES_SIM_103) (30) [ARRY] (2) R3.S = {R3.v[1] * (-R3.i)[1] + R3.v[2] * (-R3.i)[2], R3.v[2] * (-R3.i)[1] - R3.v[1] * (-R3.i)[2]} ($RES_BND_151) (31) [SCAL] (1) Rline_3b.terminal_p.v[2] = R3.terminal.v[2] ($RES_SIM_104) (32) [ARRY] (2) Rline_2a.terminal_p.i = -Rline_2a.terminal_n.i ($RES_SIM_22) (33) [ARRY] (2) sc_load.v = sc_load.terminal.v ($RES_BND_152) (34) [SCAL] (1) E.terminal.theta[1] = Rline_3b.terminal_n.theta[1] ($RES_SIM_140) (35) [SCAL] (1) Rline_3b.terminal_p.v[1] = Rline_3a.terminal_p.v[1] ($RES_SIM_105) (36) [SCAL] (1) Rline_2a.R_actual = ((Rline_2a.M + ((-273.15) + Rline_2a.T)) * Rline_2a.R) / (Rline_2a.M + ((-273.15) + Rline_2a.T_ref)) ($RES_SIM_23) (37) [ARRY] (2) sc_load.i = sc_load.terminal.i ($RES_BND_153) (38) [SCAL] (1) Rline_3b.terminal_p.v[1] = R3.terminal.v[1] ($RES_SIM_106) (39) [ARRY] (2) sc_load.S = {sc_load.v[1] * (-sc_load.i)[1] + sc_load.v[2] * (-sc_load.i)[2], sc_load.v[2] * (-sc_load.i)[1] - sc_load.v[1] * (-sc_load.i)[2]} ($RES_BND_154) (40) [SCAL] (1) Rline_3b.terminal_p.theta[1] = Rline_3a.terminal_p.theta[1] ($RES_SIM_107) (41) [ARRY] (1) Rline_2a.terminal_p.theta = Rline_2a.terminal_n.theta ($RES_SIM_25) (42) [SCAL] (1) Rline_2a.LossPower = Rline_2a.R_actual * (Rline_2a.terminal_p.i[1] ^ 2.0 + Rline_2a.terminal_p.i[2] ^ 2.0) ($RES_SIM_26) (43) [SCAL] (1) Rline_3b.terminal_p.theta[1] = R3.terminal.theta[1] ($RES_SIM_108) (44) [ARRY] (2) Rline_2a.terminal_p.v - Rline_2a.terminal_n.v = Rline_2a.terminal_p.i * $FUN_3 ($RES_SIM_27) (45) [FOR-] (2) ($RES_SIM_109) (45) [----] for $i1 in 1:2 loop (45) [----] [SCAL] (1) Rline_2b.terminal_p.i[$i1] + R2.terminal.i[$i1] = 0.0 ($RES_SIM_110) (45) [----] end for; (46) [ARRY] (2) Rline_1.terminal_p.i = -Rline_1.terminal_n.i ($RES_SIM_29) (47) [ARRY] (2) R3.terminal.v = {{R3.R, -R3.X} * R3.terminal.i, {R3.X, R3.R} * R3.terminal.i} ($RES_SIM_67) (48) [SCAL] (1) R3.X = R3.omega * R3.L ($RES_SIM_68) (49) [SCAL] (1) R3.omega = $DER.R3.terminal.theta[1] ($RES_SIM_69) (50) [ARRY] (2) Rline_2b.terminal_p.v = R2.terminal.v ($RES_SIM_111) (51) [ARRY] (1) Rline_2b.terminal_p.theta = R2.terminal.theta ($RES_SIM_112) (52) [SCAL] (1) Rline_1.R_actual = ((Rline_1.M + ((-273.15) + Rline_1.T)) * Rline_1.R) / (Rline_1.M + ((-273.15) + Rline_1.T_ref)) ($RES_SIM_30) (53) [FOR-] (2) ($RES_SIM_113) (53) [----] for $i1 in 1:2 loop (53) [----] [SCAL] (1) Rline_2a.terminal_p.i[$i1] + Rline_2b.terminal_n.i[$i1] = 0.0 ($RES_SIM_114) (53) [----] end for; (54) [ARRY] (1) Rline_1.terminal_p.theta = Rline_1.terminal_n.theta ($RES_SIM_32) (55) [ARRY] (2) Rline_2a.terminal_p.v = Rline_2b.terminal_n.v ($RES_SIM_115) (56) [SCAL] (1) Rline_1.LossPower = Rline_1.R_actual * (Rline_1.terminal_p.i[1] ^ 2.0 + Rline_1.terminal_p.i[2] ^ 2.0) ($RES_SIM_33) (57) [ARRY] (1) Rline_2a.terminal_p.theta = Rline_2b.terminal_n.theta ($RES_SIM_116) (58) [ARRY] (2) Rline_1.terminal_p.v - Rline_1.terminal_n.v = Rline_1.terminal_p.i * $FUN_2 ($RES_SIM_34) (59) [ARRY] (4) $FUN_1 = diagonal(fill(1.0, 2) .* Rline_sc.R_actual) ($RES_$AUX_160) (60) [FOR-] (2) ($RES_SIM_117) (60) [----] for $i1 in 1:2 loop (60) [----] [SCAL] (1) Rline_1.terminal_p.i[$i1] + R1.terminal.i[$i1] = 0.0 ($RES_SIM_118) (60) [----] end for; (61) [ARRY] (2) Rline_sc.terminal_p.i = -Rline_sc.terminal_n.i ($RES_SIM_36) (62) [ARRY] (2) Rline_1.terminal_p.v = R1.terminal.v ($RES_SIM_119) (63) [SCAL] (1) Rline_sc.R_actual = ((Rline_sc.M + ((-273.15) + Rline_sc.T)) * Rline_sc.R) / (Rline_sc.M + ((-273.15) + Rline_sc.T_ref)) ($RES_SIM_37) (64) [ARRY] (1) Rline_sc.terminal_p.theta = Rline_sc.terminal_n.theta ($RES_SIM_39) (65) [ARRY] (4) $FUN_2 = diagonal(fill(1.0, 2) .* Rline_1.R_actual) ($RES_$AUX_159) (66) [ARRY] (4) $FUN_3 = diagonal(fill(1.0, 2) .* Rline_2a.R_actual) ($RES_$AUX_158) (67) [ARRY] (4) $FUN_4 = diagonal(fill(1.0, 2) .* Rline_2b.R_actual) ($RES_$AUX_157) (68) [ARRY] (1) Rline_1.terminal_p.theta = R1.terminal.theta ($RES_SIM_120) (69) [ARRY] (4) $FUN_5 = diagonal(fill(1.0, 2) .* Rline_3a.R_actual) ($RES_$AUX_156) (70) [SCAL] (1) Rline_1.terminal_n.i[2] + Rline_2a.terminal_n.i[2] + Rline_3a.terminal_n.i[2] + Rline_3b.terminal_n.i[2] + E.terminal.i[2] + Rline_sc.terminal_n.i[2] = 0.0 ($RES_SIM_121) (71) [ARRY] (4) $FUN_6 = diagonal(fill(1.0, 2) .* Rline_3b.R_actual) ($RES_$AUX_155) (72) [SCAL] (1) Rline_sc.LossPower = Rline_sc.R_actual * (Rline_sc.terminal_p.i[1] ^ 2.0 + Rline_sc.terminal_p.i[2] ^ 2.0) ($RES_SIM_40) (73) [SCAL] (1) Rline_1.terminal_n.i[1] + Rline_2a.terminal_n.i[1] + Rline_3a.terminal_n.i[1] + Rline_3b.terminal_n.i[1] + E.terminal.i[1] + Rline_sc.terminal_n.i[1] = 0.0 ($RES_SIM_122) (74) [ARRY] (2) Rline_sc.terminal_p.v - Rline_sc.terminal_n.v = Rline_sc.terminal_p.i * $FUN_1 ($RES_SIM_41) (75) [SCAL] (1) E.terminal.v[2] = Rline_sc.terminal_n.v[2] ($RES_SIM_123) (76) [SCAL] (1) E.terminal.v[2] = Rline_1.terminal_n.v[2] ($RES_SIM_124) (77) [SCAL] (1) E.terminal.v[2] = Rline_2a.terminal_n.v[2] ($RES_SIM_125) (78) [SCAL] (1) E.terminal.v[2] = Rline_3a.terminal_n.v[2] ($RES_SIM_126) (79) [SCAL] (1) E.terminal.v[2] = Rline_3b.terminal_n.v[2] ($RES_SIM_127) (80) [ARRY] (2) R2.terminal.v = {{R2.R, -R2.X} * R2.terminal.i, {R2.X, R2.R} * R2.terminal.i} ($RES_SIM_81) (81) [SCAL] (1) E.terminal.v[1] = Rline_sc.terminal_n.v[1] ($RES_SIM_128) (82) [SCAL] (1) R2.X = R2.omega * R2.L ($RES_SIM_82) (83) [SCAL] (1) E.terminal.v[1] = Rline_1.terminal_n.v[1] ($RES_SIM_129) (84) [SCAL] (1) R2.omega = $DER.R2.terminal.theta[1] ($RES_SIM_83) (85) [SCAL] (1) $SEV_0 = Rline_3b.R_actual >= 0.0 ($RES_EVT_161) (86) [SCAL] (1) $SEV_1 = Rline_3a.R_actual >= 0.0 ($RES_EVT_162) (87) [SCAL] (1) $SEV_2 = Rline_2b.R_actual >= 0.0 ($RES_EVT_163) (88) [SCAL] (1) $SEV_3 = Rline_2a.R_actual >= 0.0 ($RES_EVT_164) (89) [SCAL] (1) $SEV_4 = Rline_1.R_actual >= 0.0 ($RES_EVT_165) (90) [SCAL] (1) Rline_3a.R_actual = ((Rline_3a.M + ((-273.15) + Rline_3a.T)) * Rline_3a.R) / (Rline_3a.M + ((-273.15) + Rline_3a.T_ref)) ($RES_SIM_9) (91) [SCAL] (1) $SEV_5 = Rline_sc.R_actual >= 0.0 ($RES_EVT_166) (92) [ARRY] (2) Rline_3a.terminal_p.i = -Rline_3a.terminal_n.i ($RES_SIM_8) (93) [ARRY] (2) Rline_3b.terminal_p.v - Rline_3b.terminal_n.v = Rline_3b.terminal_p.i * $FUN_6 ($RES_SIM_6) (94) [SCAL] (1) Rline_3b.LossPower = Rline_3b.R_actual * (Rline_3b.terminal_p.i[1] ^ 2.0 + Rline_3b.terminal_p.i[2] ^ 2.0) ($RES_SIM_5) (95) [ARRY] (1) Rline_3b.terminal_p.theta = Rline_3b.terminal_n.theta ($RES_SIM_4) (96) [SCAL] (1) Rline_3b.R_actual = ((Rline_3b.M + ((-273.15) + Rline_3b.T)) * Rline_3b.R) / (Rline_3b.M + ((-273.15) + Rline_3b.T_ref)) ($RES_SIM_2) (97) [ARRY] (2) Rline_3b.terminal_p.i = -Rline_3b.terminal_n.i ($RES_SIM_1) (98) [ARRY] (1) Rline_3a.terminal_p.theta = Rline_3a.terminal_n.theta ($RES_SIM_11) (99) [ARRY] (2) E.S = {E.terminal.v[1] * E.terminal.i[1] + E.terminal.v[2] * E.terminal.i[2], E.terminal.v[2] * E.terminal.i[1] - E.terminal.v[1] * E.terminal.i[2]} ($RES_BND_141) (100) [SCAL] (1) Rline_3a.LossPower = Rline_3a.R_actual * (Rline_3a.terminal_p.i[1] ^ 2.0 + Rline_3a.terminal_p.i[2] ^ 2.0) ($RES_SIM_12) (101) [SCAL] (1) E.phi = atan2(E.terminal.v[2], E.terminal.v[1]) - atan2((-E.terminal.i)[2], (-E.terminal.i)[1]) ($RES_BND_142) (102) [SCAL] (1) E.terminal.v[1] = Rline_2a.terminal_n.v[1] ($RES_SIM_130) (103) [ARRY] (2) Rline_3a.terminal_p.v - Rline_3a.terminal_n.v = Rline_3a.terminal_p.i * $FUN_5 ($RES_SIM_13) (104) [ARRY] (2) R1.v = R1.terminal.v ($RES_BND_143) (105) [SCAL] (1) E.terminal.v[1] = Rline_3a.terminal_n.v[1] ($RES_SIM_131) (106) [ARRY] (2) R1.i = R1.terminal.i ($RES_BND_144)