Environment - simulationEnvironment:
startTime=0
stopTime=0
tolerance=1e-06
numberOfIntervals=2500
stepSize=0
Regular simulation: ./ModelicaTest_4.1.0-beta.om_ModelicaTest.Math.TestNonlinear  -abortSlowSimulation -alarm=480 -s cvode -emit_protected -lv LOG_STATS
LOG_STDOUT        | info    | 
|                 | |       | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto1:
LOG_STDOUT        | info    | Function 1 ( integral(sin(x)*dx) from x=0 to x=1): 
LOG_STDOUT        | info    | Analytical integral value = 0.4596976941318602
LOG_STDOUT        | info    | Numerical integral value  = 0.4596976941318208
LOG_STDOUT        | info    | Absolute difference       = 4e-14
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 2 (integral(sin(5*x)*dx) from x=0 to x=13): 
LOG_STDOUT        | info    | Analytical integral value = 0.3124907702476344
LOG_STDOUT        | info    | Numerical integral value  = 0.3124907702522153
LOG_STDOUT        | info    | Absolute difference       = 5e-12
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 3 (Elliptic integral from x=0 to pi/2): 
LOG_STDOUT        | info    | Analytical integral value = 1.8540746773013719
LOG_STDOUT        | info    | Numerical integral value  = 1.8540746773012198
LOG_STDOUT        | info    | Absolute difference       = 2e-13
LOG_STDOUT        | info    | 
|                 | |       | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto2:
LOG_STDOUT        | info    | Function 1 (integral(sin(x)*dx)): 
LOG_STDOUT        | info    | Numerical integral value  = 0.4596976941318208
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 2 (integral(sin(w*x)*dx)): 
LOG_STDOUT        | info    | Numerical integral value  = 0.3124907702522153
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 3 (Elliptic integral): 
LOG_STDOUT        | info    | Numerical integral value  = 1.8540746773012198
LOG_STDOUT        | info    | 
|                 | |       | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations1:
LOG_STDOUT        | info    | Solve 3 nonlinear equations with relative tolerance = 2.22045e-14
|                 | |       | 
LOG_STDOUT        | info    | Function 1 (u^2 - 1 = 0): 
LOG_STDOUT        | info    | Analytical zero     = 1.0000000000000000
LOG_STDOUT        | info    | Numerical zero      = 1.0000000000000000
LOG_STDOUT        | info    | Absolute difference = 0e+00
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 2 (3*u - sin(3*u) - 1 = 0): 
LOG_STDOUT        | info    | Analytical zero     = 0.6448544035840081
LOG_STDOUT        | info    | Numerical zero      = 0.6448544035840081
LOG_STDOUT        | info    | Absolute difference = 0e+00
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 3 (5 + log(u) - u = 0): 
LOG_STDOUT        | info    | Analytical zero     = 6.9368474072202186
LOG_STDOUT        | info    | Numerical zero      = 6.9368474072202186
LOG_STDOUT        | info    | Absolute difference = 0e+00
LOG_STDOUT        | info    | 
|                 | |       | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations2:
LOG_STDOUT        | info    | Solve 3 nonlinear equations with relative tolerance = 2.22045e-14
|                 | |       | 
LOG_STDOUT        | info    | Function 1 (u^2 - 1): 
LOG_STDOUT        | info    | Numerical zero = 1.0000000000000000
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 2 (3*u - sin(w*u) - 1): 
LOG_STDOUT        | info    | Numerical zero = 0.6448544035840081
LOG_STDOUT        | info    | 
LOG_STDOUT        | info    | Function 3 (p[1] + log(p[2]*u) - m*u): 
LOG_STDOUT        | info    | Numerical zero = 6.9368474072202186
LOG_SUCCESS       | info    | The initialization finished successfully without homotopy method.
LOG_STATS         | info    | ### STATISTICS ###
|                 | |       | | timer
|                 | |       | | |   0.00015453s          reading init.xml
|                 | |       | | |   3.3233e-05s          reading info.xml
|                 | |       | | |    7.448e-05s [ 16.3%] pre-initialization
|                 | |       | | |  0.000378039s [ 82.8%] initialization
|                 | |       | | |            0s [  0.0%] steps
|                 | |       | | |            0s [  0.0%] solver (excl. callbacks)
|                 | |       | | |   3.7112e-05s [  8.1%] creating output-file
|                 | |       | | |            0s [  0.0%] event-handling
|                 | |       | | |            0s [  0.0%] overhead
|                 | |       | | |  -3.3096e-05s [ -7.2%] simulation
|                 | |       | | |  0.000456535s [100.0%] total
|                 | |       | | events
|                 | |       | | |     0 state events
|                 | |       | | |     0 time events
|                 | |       | | solver: euler
|                 | |       | | |     0 steps taken
|                 | |       | | |     0 calls of functionODE
|                 | |       | | |     0 evaluations of jacobian
|                 | |       | | |     0 error test failures
|                 | |       | | |     0 convergence test failures
|                 | |       | | | 0s time of jacobian evaluation
LOG_SUCCESS       | info    | The simulation finished successfully.