Running: ./testmodel.py --libraries=/home/hudson/saved_omc/libraries/.openmodelica/libraries --ompython_omhome=/usr Modelica_3.1_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse.ThyristorCenterTapmPulse_RLV.conf.json loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo", uses=false) loadFile("/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo", uses=false) Using package Modelica with version 3.2.3 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo) Using package Complex with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo) Using package ModelicaServices with version 4.0.0 (/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo) Running command: translateModel(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse.ThyristorCenterTapmPulse_RLV,tolerance=1e-06,outputFormat="empty",numberOfIntervals=1000,variableFilter="",fileNamePrefix="Modelica_3.1_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse.ThyristorCenterTapmPulse_RLV") translateModel(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse.ThyristorCenterTapmPulse_RLV,tolerance=1e-06,outputFormat="empty",numberOfIntervals=1000,variableFilter="",fileNamePrefix="Modelica_3.1_Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse.ThyristorCenterTapmPulse_RLV") Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/ModelicaServices 4.0.0+maint.om/package.mo): time 0.001196/0.001196, allocations: 109.9 kB / 16.42 MB, free: 6.516 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Complex 4.0.0+maint.om/package.mo): time 0.001146/0.001147, allocations: 185.5 kB / 17.35 MB, free: 5.73 MB / 14.72 MB Notification: Performance of loadFile(/home/hudson/saved_omc/libraries/.openmodelica/libraries/Modelica 3.2.3+maint.om/package.mo): time 1.489/1.489, allocations: 205.1 MB / 223.2 MB, free: 12.22 MB / 190.1 MB Notification: Performance of FrontEnd - Absyn->SCode: time 2.716e-05/2.717e-05, allocations: 2.984 kB / 327.2 MB, free: 3.281 MB / 270.1 MB Notification: Performance of NFInst.instantiate(Modelica.Electrical.PowerConverters.Examples.ACDC.RectifierCenterTapmPulse.ThyristorCenterTapmPulse_RLV): time 0.006613/0.006649, allocations: 5.055 MB / 332.3 MB, free: 14.2 MB / 286.1 MB Notification: Performance of NFInst.instExpressions: time 0.003299/0.009971, allocations: 1.594 MB / 333.9 MB, free: 12.6 MB / 286.1 MB Notification: Performance of NFInst.updateImplicitVariability: time 0.0004115/0.0104, allocations: 27.81 kB / 333.9 MB, free: 12.57 MB / 286.1 MB Notification: Performance of NFTyping.typeComponents: time 0.0003718/0.01078, allocations: 190.4 kB / 334.1 MB, free: 12.39 MB / 286.1 MB Notification: Performance of NFTyping.typeBindings: time 0.0007766/0.01166, allocations: 310.1 kB / 334.4 MB, free: 12.08 MB / 286.1 MB Notification: Performance of NFTyping.typeClassSections: time 0.0005442/0.01221, allocations: 311.5 kB / 334.7 MB, free: 11.78 MB / 286.1 MB Notification: Performance of NFFlatten.flatten: time 0.001635/0.01386, allocations: 1.738 MB / 336.4 MB, free: 10.04 MB / 286.1 MB Notification: Performance of NFFlatten.resolveConnections: time 0.0008971/0.01477, allocations: 0.7854 MB / 337.2 MB, free: 9.227 MB / 286.1 MB Notification: Performance of NFEvalConstants.evaluate: time 0.0006017/0.01538, allocations: 0.553 MB / 337.8 MB, free: 8.672 MB / 286.1 MB Notification: Performance of NFSimplifyModel.simplify: time 0.000613/0.016, allocations: 0.5683 MB / 338.3 MB, free: 8.102 MB / 286.1 MB Notification: Performance of NFPackage.collectConstants: time 0.0001304/0.01614, allocations: 111.9 kB / 338.5 MB, free: 7.992 MB / 286.1 MB Notification: Performance of NFFlatten.collectFunctions: time 0.0001598/0.01631, allocations: 112 kB / 338.6 MB, free: 7.883 MB / 286.1 MB Notification: Performance of combineBinaries: time 0.001135/0.01745, allocations: 1.501 MB / 340.1 MB, free: 6.367 MB / 286.1 MB Notification: Performance of replaceArrayConstructors: time 0.000654/0.01811, allocations: 0.9565 MB / 341 MB, free: 5.398 MB / 286.1 MB Notification: Performance of NFVerifyModel.verify: time 0.0001601/0.01828, allocations: 151.5 kB / 341.2 MB, free: 5.25 MB / 286.1 MB Notification: Performance of FrontEnd: time 0.0001378/0.01843, allocations: 35.81 kB / 341.2 MB, free: 5.215 MB / 286.1 MB Notification: Model statistics after passing the front-end and creating the data structures used by the back-end: * Number of equations: 331 (181) * Number of variables: 331 (156) Notification: Performance of Bindings: time 0.004564/0.023, allocations: 4.827 MB / 346 MB, free: 224 kB / 286.1 MB Notification: Performance of FunctionAlias: time 0.0003709/0.02338, allocations: 259 kB / 346.3 MB, free: 15.96 MB / 302.1 MB Notification: Performance of Early Inline: time 0.002128/0.02552, allocations: 2.408 MB / 348.7 MB, free: 13.52 MB / 302.1 MB Notification: Performance of simplify1: time 0.0001532/0.02568, allocations: 135.8 kB / 348.8 MB, free: 13.38 MB / 302.1 MB Notification: Performance of Alias: time 0.00301/0.0287, allocations: 2.806 MB / 351.6 MB, free: 10.35 MB / 302.1 MB Notification: Performance of simplify2: time 0.0001247/0.02884, allocations: 103.7 kB / 351.7 MB, free: 10.25 MB / 302.1 MB Notification: Performance of Events: time 0.0005614/0.0294, allocations: 0.5261 MB / 352.3 MB, free: 9.699 MB / 302.1 MB Notification: Performance of Detect States: time 0.0007786/0.03019, allocations: 0.7982 MB / 353.1 MB, free: 8.883 MB / 302.1 MB Notification: Performance of Partitioning: time 0.00113/0.03133, allocations: 1.031 MB / 354.1 MB, free: 7.766 MB / 302.1 MB Error: Internal error NBSlice.fillDependencyArray failed because number of flattened indices 1 for dependency pulsem.twomPulse.gain.y could not be divided by the body size 3 without rest. Error: Internal error NBAdjacency.Matrix.createPseudo failed for: [ARRY] (3) pulsem.twomPulse.replicator.y = {pulsem.twomPulse.gain.y for $i1 in 1:3} ($RES_SIM_40) Error: Internal error NBAdjacency.Matrix.create failed to create adjacency matrix for system: System Variables (124/317) **************************** (1) [ALGB] (3) Real[3] pulsem.twomPulse.replicator.y (2) [ALGB] (3) flow Real[3] rectifier.thyristor.idealThyristor.n.i (3) [ALGB] (3) Real[3] rectifier.star.plug_p.pin.v (4) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.v (5) [DISC] (3) Boolean[3] rectifier.andCondition_p.y (6) [ALGB] (3) Real[3] pulsem.voltageSensor.voltageSensor.v (7) [ALGB] (3) flow Real[3] pulsem.voltageSensor.voltageSensor.n.i (8) [ALGB] (3) Real[3] rectifier.vAC = rectifier.ac.pin[:].v (9) [ALGB] (1) Real resistor.n.v (10) [ALGB] (3) flow Real[3] sineVoltage_p.sineVoltage.n.i (11) [DISC] (3) Boolean[3] pulsem.twomPulse.timerNegative.u (12) [DER-] (1) Real $DER.inductor.i (13) [ALGB] (3) flow Real[3] rectifier.star.plug_p.pin.i (14) [DISC] (3) Boolean[3] pulsem.twomPulse.positiveThreshold.y (15) [ALGB] (1) Real pulsem.twomPulse.limiter.y (16) [DISC] (3) Boolean[3] rectifier.enableLogic.internalEnable (17) [ALGB] (3) Real[3] pulsem.twomPulse.timerNegative.y (18) [ALGB] (3) Real[3] pulsem.twomPulse.positiveThreshold.u (19) [ALGB] (3) Real[3] pulsem.twomPulse.negativeEqual.u2 (20) [DISC] (3) Boolean[3] $SEV_11[$i1] (21) [ALGB] (3) flow Real[3] star.plug_p.pin.i (22) [ALGB] (3) Real[3] pulsem.twomPulse.negativeEqual.u1 (23) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.n.v (24) [ALGB] (1) Real rectifier.LossPower (25) [ALGB] (3) final Real[3] rectifier.thyristor.idealThyristor.v (26) [ALGB] (3) flow Real[3] sineVoltage_p.sineVoltage.p.i (27) [ALGB] (3) protected final Real[3] rectifier.thyristor.idealThyristor.s (start = {0.0 for $i1 in 1:3}) (28) [ALGB] (1) Real rootMeanSquareVoltage.product.y (29) [ALGB] (1) Real meanVoltage.u (30) [ALGB] (3) flow Real[3] rectifier.ac.pin.i (31) [ALGB] (2) Real[2] rootMeanSquareVoltage.product.u (32) [DISC] (3) Boolean[3] pulsem.fire_n (33) [ALGB] (3) flow Real[3] pulsem.ac.pin.i (34) [ALGB] (3) Real[3] star.plug_p.pin.v (35) [DISC] (3) Boolean[3] pulsem.fire_p (36) [DISC] (3) Boolean[3] pulsem.twomPulse.greaterPositive.y (37) [DISC] (3) Boolean[3] $SEV_6[$i1] (38) [ALGB] (1) Real rectifier.vDC = rectifier.vDC (39) [ALGB] (1) Real resistor.LossPower (40) [ALGB] (3) final Real[3] rectifier.thyristor.idealThyristor.i (41) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.p.v (42) [ALGB] (3) Real[3] rectifier.ac.pin.v (43) [DISC] (3) Boolean[3] pulsem.twomPulse.negativeThreshold.y (44) [DISC] (3) Boolean[3] rectifier.thyristor.fire (45) [ALGB] (3) Real[3] $FUN_2 (46) [ALGB] (3) Real[3] rectifier.thyristor.plug_p.pin.v (47) [ALGB] (3) Real[3] pulsem.ac.pin.v (48) [ALGB] (3) flow Real[3] pulsem.delta.plug_n.pin.i (49) [ALGB] (3) Real[3] pulsem.twomPulse.negativeThreshold.u (50) [ALGB] (3) Real[3] pulsem.twomPulse.greaterPositive.u2 (51) [DISC] (3) Boolean[3] $SEV_9[$i1] (52) [ALGB] (3) flow Real[3] sineVoltage_p.plug_n.pin.i (53) [ALGB] (3) Real[3] pulsem.twomPulse.greaterPositive.u1 (54) [DISC] (3) Boolean[3] rectifier.thyristor.off = rectifier.thyristor.idealThyristor.off (55) [DER-] (1) Real $DER.meanVoltage.x (56) [ALGB] (3) flow Real[3] rectifier.thyristor.plug_p.pin.i (57) [DISC] (3) Boolean[3] $SEV_10[$i1] (58) [ALGB] (3) Real[3] pulsem.delta.plug_n.pin.v (59) [ALGB] (3) final Real[3] rectifier.thyristor.idealThyristor.LossPower (60) [ALGB] (3) Real[3] sineVoltage_p.plug_n.pin.v (61) [ALGB] (1) Real rectifier.powerTotalAC = sum(rectifier.powerAC) (62) [DISC] (3) Boolean[3] pulsem.twomPulse.negativeEqual.y (63) [DISC] (3) Boolean[3] rectifier.fire_p (64) [ALGB] (3) Real[3] rectifier.iAC = rectifier.ac.pin[:].i (65) [ALGB] (3) Real[3] pulsem.twomPulse.v (66) [ALGB] (3) flow Real[3] pulsem.voltageSensor.plug_n.pin.i (67) [ALGB] (3) Real[3] pulsem.twomPulse.realPassThrough.u (68) [DISC] (3) Boolean[3] $SEV_5[$i1] (69) [DISC] (3) Boolean[3] rectifier.andCondition_p.u2 (70) [DISC] (3) Boolean[3] rectifier.andCondition_p.u1 (71) [ALGB] (3) Real[3] pulsem.twomPulse.realPassThrough.y (72) [ALGB] (1) flow Real star.pin_n.i (73) [ALGB] (3) Real[3] rectifier.thyristor.plug_n.pin.v (74) [ALGB] (3) flow Real[3] pulsem.delta.plug_p.pin.i (75) [DER-] (1) Real $DER.meanCurrent.x (76) [ALGB] (3) flow Real[3] sineVoltage_p.plug_p.pin.i (77) [DISS] (3) protected discrete Real[3] pulsem.twomPulse.timerNegative.entryTime (78) [ALGB] (1) Real inductor.v (79) [ALGB] (3) Real[3] rectifier.thyristor.i (80) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.signalSource.y (81) [ALGB] (3) Real[3] pulsem.voltageSensor.plug_n.pin.v (82) [ALGB] (3) Real[3] sineVoltage_p.i (83) [ALGB] (1) flow Real currentSensor.n.i (84) [DISC] (3) Boolean[3] $SEV_8[$i1] (85) [DISC] (3) Boolean[3] rectifier.enableLogic.booleanReplicator.y (86) [ALGB] (3) flow Real[3] rectifier.thyristor.plug_n.pin.i (87) [ALGB] (3) Real[3] pulsem.delta.plug_p.pin.v (88) [ALGB] (1) Real rectifier.powerDC = rectifier.vDC * rectifier.iDC (89) [DISS] (3) protected discrete Real[3] pulsem.twomPulse.timerPositive.entryTime (90) [ALGB] (3) Real[3] sineVoltage_p.plug_p.pin.v (91) [ALGB] (3) Real[3] rectifier.thyristor.idealThyristor.p.v (92) [ALGB] (3) Real[3] rectifier.thyristor.v (93) [DISC] (3) Boolean[3] pulsem.twomPulse.fire_p (94) [DISC] (1) Boolean $TEV_8 (95) [ALGB] (1) Real rectifier.iDC = rectifier.iDC (96) [DISC] (1) Boolean $SEV_2 (97) [DISC] (3) Boolean[3] pulsem.twomPulse.fire_n (98) [DISC] (1) Boolean $SEV_1 (99) [ALGB] (3) Real[3] sineVoltage_p.v (100) [ALGB] (3) flow Real[3] pulsem.voltageSensor.plug_p.pin.i (101) [ALGB] (3) Real[3] pulsem.voltageSensor.v (102) [ALGB] (3) Real[3] pulsem.voltageSensor.voltageSensor.p.v (103) [DISC] (1) Boolean $TEV_1 (104) [DISC] (1) Boolean $TEV_0 (105) [ALGB] (1) Real resistor.R_actual (106) [DISC] (3) Boolean[3] rectifier.thyristor.idealThyristor.fire (107) [ALGB] (3) flow Real[3] rectifier.thyristor.idealThyristor.p.i (108) [DISC] (3) Boolean[3] $SEV_12[$i1] (109) [DISC] (3) Boolean[3] $SEV_4[$i1] (110) [DER-] (1) Real $DER.rootMeanSquareVoltage.mean.x (111) [ALGB] (1) Real resistor.v (112) [ALGB] (1) Real inductor.n.v (113) [DISC] (3) final Boolean[3] rectifier.thyristor.idealThyristor.off (fixed = {true for $i1 in 1:3}, start = {rectifier.offStart[$idealThyristor1] for $idealThyristor1 in 1:3}) (114) [ALGB] (3) Real[3] rectifier.thyristor.idealThyristor.n.v (115) [ALGB] (3) Real[3] sineVoltage_p.sineVoltage.i (116) [ALGB] (3) Real[3] pulsem.voltageSensor.plug_p.pin.v (117) [ALGB] (3) flow Real[3] pulsem.voltageSensor.voltageSensor.p.i (118) [ALGB] (1) Real pulsem.twomPulse.gain.y (119) [DISC] (3) Boolean[3] pulsem.twomPulse.timerPositive.u (120) [ALGB] (3) Real[3] rectifier.powerAC = rectifier.vAC * rectifier.iAC (121) [ALGB] (3) Real[3] pulsem.voltageSensor.voltageSensor.n.v (122) [ALGB] (1) flow Real ground.p.i (123) [ALGB] (3) Real[3] pulsem.twomPulse.timerPositive.y (124) [DISC] (3) Boolean[3] $SEV_7[$i1] System Equations (149/317) **************************** (1) [ARRY] (3) rectifier.enableLogic.internalEnable = rectifier.andCondition_p.u2 ($RES_SIM_204) (2) [ARRY] (3) rectifier.andCondition_p.u1 = rectifier.fire_p ($RES_SIM_205) (3) [ARRY] (3) rectifier.andCondition_p.y = rectifier.thyristor.fire ($RES_SIM_206) (4) [ARRY] (3) rectifier.thyristor.i = rectifier.thyristor.plug_p.pin.i ($RES_SIM_81) (5) [FOR-] (3) ($RES_SIM_207) (5) [----] for $i1 in 1:3 loop (5) [----] [SCAL] (1) rectifier.thyristor.plug_p.pin[$i1].i - rectifier.ac.pin[$i1].i = 0.0 ($RES_SIM_208) (5) [----] end for; (6) [ARRY] (3) rectifier.thyristor.v = rectifier.thyristor.plug_p.pin.v - rectifier.thyristor.plug_n.pin.v ($RES_SIM_82) (7) [SCAL] (1) inductor.i + rectifier.iDC = 0.0 ($RES_SIM_122) (8) [FOR-] (3) ($RES_SIM_83) (8) [----] for $i1 in 1:3 loop (8) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].i = rectifier.thyristor.idealThyristor[$i1].p.i ($RES_SIM_84) (8) [----] end for; (9) [ARRY] (3) rectifier.ac.pin.v = rectifier.thyristor.plug_p.pin.v ($RES_SIM_209) (10) [SCAL] (1) star.pin_n.i + currentSensor.n.i + ground.p.i = 0.0 ($RES_SIM_124) (11) [FOR-] (3) ($RES_SIM_85) (11) [----] for $i1 in 1:3 loop (11) [----] [SCAL] (1) 0.0 = rectifier.thyristor.idealThyristor[$i1].p.i + rectifier.thyristor.idealThyristor[$i1].n.i ($RES_SIM_86) (11) [----] end for; (12) [FOR-] (3) ($RES_SIM_125) (12) [----] for $i1 in 1:3 loop (12) [----] [SCAL] (1) star.plug_p.pin[$i1].i + sineVoltage_p.plug_n.pin[$i1].i = 0.0 ($RES_SIM_126) (12) [----] end for; (13) [FOR-] (3) ($RES_SIM_87) (13) [----] for $i1 in 1:3 loop (13) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].v = rectifier.thyristor.idealThyristor[$i1].p.v - rectifier.thyristor.idealThyristor[$i1].n.v ($RES_SIM_88) (13) [----] end for; (14) [ARRY] (3) star.plug_p.pin.v = sineVoltage_p.plug_n.pin.v ($RES_SIM_127) (15) [SCAL] (1) rectifier.ac.pin[3].i + sineVoltage_p.plug_p.pin[3].i + pulsem.ac.pin[3].i = 0.0 ($RES_SIM_128) (16) [SCAL] (1) rectifier.ac.pin[2].i + sineVoltage_p.plug_p.pin[2].i + pulsem.ac.pin[2].i = 0.0 ($RES_SIM_129) (17) [FOR-] (3) ($RES_SIM_211) (17) [----] for $i1 in 1:3 loop (17) [----] [SCAL] (1) rectifier.thyristor.plug_n.pin[$i1].i + rectifier.star.plug_p.pin[$i1].i = 0.0 ($RES_SIM_212) (17) [----] end for; (18) [ARRY] (3) rectifier.thyristor.plug_n.pin.v = rectifier.star.plug_p.pin.v ($RES_SIM_213) (19) [SCAL] (1) constantVoltage.V = inductor.n.v ($RES_SIM_15) (20) [ARRY] (3) rectifier.thyristor.fire = rectifier.thyristor.idealThyristor.fire ($RES_SIM_214) (21) [SCAL] (1) rectifier.ac.pin[1].i + sineVoltage_p.plug_p.pin[1].i + pulsem.ac.pin[1].i = 0.0 ($RES_SIM_130) (22) [FOR-] (3) ($RES_SIM_215) (22) [----] for $i1 in 1:3 loop (22) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].n.i - rectifier.thyristor.plug_n.pin[$i1].i = 0.0 ($RES_SIM_216) (22) [----] end for; (23) [SCAL] (1) rectifier.ac.pin[3].v = pulsem.ac.pin[3].v ($RES_SIM_131) (24) [FOR-] (3) ($RES_SIM_91) (24) [----] for $i1 in 1:3 loop (24) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].LossPower = rectifier.thyristor.idealThyristor[$i1].v * rectifier.thyristor.idealThyristor[$i1].i ($RES_SIM_92) (24) [----] end for; (25) [ARRY] (3) rectifier.thyristor.idealThyristor.n.v = rectifier.thyristor.plug_n.pin.v ($RES_SIM_217) (26) [SCAL] (1) inductor.v = resistor.n.v - inductor.n.v ($RES_SIM_19) (27) [SCAL] (1) rectifier.ac.pin[3].v = sineVoltage_p.plug_p.pin[3].v ($RES_SIM_132) (28) [FOR-] (3) ($RES_SIM_218) (28) [----] for $i1 in 1:3 loop (28) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].p.i - rectifier.thyristor.plug_p.pin[$i1].i = 0.0 ($RES_SIM_219) (28) [----] end for; (29) [FOR-] (3) ($RES_SIM_93) (29) [----] for $i1 in 1:3 loop (29) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].i = rectifier.thyristor.idealThyristor[$i1].s * (if rectifier.thyristor.idealThyristor[$i1].off then rectifier.thyristor.idealThyristor[$i1].Goff else 1.0) + rectifier.thyristor.idealThyristor[$i1].Goff * rectifier.thyristor.idealThyristor[$i1].Vknee ($RES_SIM_94) (29) [----] end for; (30) [SCAL] (1) rectifier.ac.pin[2].v = pulsem.ac.pin[2].v ($RES_SIM_133) (31) [SCAL] (1) rectifier.ac.pin[2].v = sineVoltage_p.plug_p.pin[2].v ($RES_SIM_134) (32) [FOR-] (3) ($RES_SIM_95) (32) [----] for $i1 in 1:3 loop (32) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].v = rectifier.thyristor.idealThyristor[$i1].s * (if rectifier.thyristor.idealThyristor[$i1].off then 1.0 else rectifier.thyristor.idealThyristor[$i1].Ron) + rectifier.thyristor.idealThyristor[$i1].Vknee ($RES_SIM_96) (32) [----] end for; (33) [SCAL] (1) rectifier.ac.pin[1].v = pulsem.ac.pin[1].v ($RES_SIM_135) (34) [SCAL] (1) rectifier.ac.pin[1].v = sineVoltage_p.plug_p.pin[1].v ($RES_SIM_136) (35) [FOR-] (3) ($RES_SIM_97) (35) [----] for $i1 in 1:3 loop (35) [----] [SCAL] (1) rectifier.thyristor.idealThyristor[$i1].off = $SEV_10[$i1] ($RES_SIM_98) (35) [----] end for; (36) [ARRY] (3) pulsem.fire_p = rectifier.fire_p ($RES_SIM_137) (37) [ARRY] (3) rectifier.enableLogic.booleanReplicator.y = {rectifier.enableLogic.enableConstantSource.k for $i1 in 1:3} ($RES_SIM_99) (38) [SCAL] (1) $DER.inductor.i = inductor.v ($RES_SIM_20) (39) [ARRY] (3) rectifier.thyristor.plug_p.pin.v = rectifier.thyristor.idealThyristor.p.v ($RES_SIM_220) (40) [SCAL] (1) resistor.v = rectifier.vDC - resistor.n.v ($RES_SIM_23) (41) [ARRY] (3) rectifier.enableLogic.internalEnable = rectifier.enableLogic.booleanReplicator.y ($RES_SIM_222) (42) [FOR-] (3) ($RES_SIM_223) (42) [----] for $i1 in 1:3 loop (42) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].n.i - sineVoltage_p.plug_n.pin[$i1].i = 0.0 ($RES_SIM_224) (42) [----] end for; (43) [SCAL] (1) resistor.LossPower = resistor.v * inductor.i ($RES_SIM_25) (44) [SCAL] (1) resistor.v = resistor.R_actual * inductor.i ($RES_SIM_26) (45) [ARRY] (3) sineVoltage_p.sineVoltage.n.v = sineVoltage_p.plug_n.pin.v ($RES_SIM_225) (46) [SCAL] (1) resistor.R_actual = resistor.R * (1.0 + resistor.alpha * (resistor.T - resistor.T_ref)) ($RES_SIM_27) (47) [FOR-] (3) ($RES_SIM_226) (47) [----] for $i1 in 1:3 loop (47) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].p.i - sineVoltage_p.plug_p.pin[$i1].i = 0.0 ($RES_SIM_227) (47) [----] end for; (48) [FOR-] (3) ($RES_SIM_29) (48) [----] for $i1 in 1:3 loop (48) [----] [SCAL] (1) pulsem.voltageSensor.voltageSensor[$i1].v = pulsem.voltageSensor.voltageSensor[$i1].p.v - pulsem.voltageSensor.voltageSensor[$i1].n.v ($RES_SIM_30) (48) [----] end for; (49) [ARRY] (3) sineVoltage_p.sineVoltage.p.v = sineVoltage_p.plug_p.pin.v ($RES_SIM_228) (50) [ARRY] (3) pulsem.twomPulse.fire_p = pulsem.fire_p ($RES_SIM_149) (51) [FOR-] (3) ($RES_SIM_31) (51) [----] for $i1 in 1:3 loop (51) [----] [SCAL] (1) pulsem.voltageSensor.voltageSensor[$i1].n.i = 0.0 ($RES_SIM_32) (51) [----] end for; (52) [FOR-] (3) ($RES_SIM_33) (52) [----] for $i1 in 1:3 loop (52) [----] [SCAL] (1) pulsem.voltageSensor.voltageSensor[$i1].p.i = 0.0 ($RES_SIM_34) (52) [----] end for; (53) [FOR-] (3) ($RES_SIM_35) (53) [----] for $i1 in 1:3 loop (53) [----] [SCAL] (1) pulsem.twomPulse.realPassThrough[$i1].y = pulsem.twomPulse.realPassThrough[$i1].u ($RES_SIM_36) (53) [----] end for; (54) [SCAL] (1) pulsem.twomPulse.limiter.y = homotopy(smooth(0, if $SEV_1 then pulsem.twomPulse.limiter.uMax else if $SEV_2 then pulsem.twomPulse.limiter.uMin else pulsem.twomPulse.constantconstantFiringAngle.k), pulsem.twomPulse.constantconstantFiringAngle.k) ($RES_SIM_37) (55) [ARRY] (3) pulsem.twomPulse.fire_n = pulsem.fire_n ($RES_SIM_150) (56) [ARRY] (3) pulsem.voltageSensor.v = pulsem.twomPulse.v ($RES_SIM_151) (57) [FOR-] (3) ($RES_SIM_152) (57) [----] for $i1 in 1:3 loop (57) [----] [SCAL] (1) pulsem.delta.plug_p.pin[$i1].i + pulsem.voltageSensor.plug_n.pin[$i1].i = 0.0 ($RES_SIM_153) (57) [----] end for; (58) [ARRY] (3) pulsem.delta.plug_p.pin.v = pulsem.voltageSensor.plug_n.pin.v ($RES_SIM_154) (59) [SCAL] (1) (pulsem.delta.plug_n.pin[3].i + pulsem.voltageSensor.plug_p.pin[3].i) - pulsem.ac.pin[3].i = 0.0 ($RES_SIM_155) (60) [SCAL] (1) (pulsem.delta.plug_n.pin[2].i + pulsem.voltageSensor.plug_p.pin[2].i) - pulsem.ac.pin[2].i = 0.0 ($RES_SIM_156) (61) [SCAL] (1) (pulsem.delta.plug_n.pin[1].i + pulsem.voltageSensor.plug_p.pin[1].i) - pulsem.ac.pin[1].i = 0.0 ($RES_SIM_157) (62) [SCAL] (1) pulsem.voltageSensor.plug_p.pin[3].v = pulsem.ac.pin[3].v ($RES_SIM_158) (63) [SCAL] (1) pulsem.voltageSensor.plug_p.pin[3].v = pulsem.delta.plug_n.pin[3].v ($RES_SIM_159) (64) [SCAL] (1) $TEV_0 = $PRE.pulsem.twomPulse.timerNegative.entryTime ($RES_EVT_245) (65) [SCAL] (1) $TEV_1 = $PRE.pulsem.twomPulse.timerPositive.entryTime ($RES_EVT_246) (66) [ARRY] (3) pulsem.twomPulse.replicator.y = {pulsem.twomPulse.gain.y for $i1 in 1:3} ($RES_SIM_40) (67) [SCAL] (1) pulsem.twomPulse.gain.y = pulsem.twomPulse.gain.k * pulsem.twomPulse.limiter.y ($RES_SIM_41) (68) [FOR-] (3) ($RES_SIM_42) (68) [----] for $i1 in 1:3 loop (68) [----] [SCAL] (1) pulsem.twomPulse.negativeEqual[$i1].y = $SEV_4[$i1] ($RES_SIM_43) (68) [----] end for; (69) [FOR-] (3) ($RES_SIM_44) (69) [----] for $i1 in 1:3 loop (69) [----] [SCAL] (1) pulsem.twomPulse.greaterPositive[$i1].y = $SEV_5[$i1] ($RES_SIM_45) (69) [----] end for; (70) [FOR-] (3) ($RES_SIM_46) (70) [----] for $i1 in 1:3 loop (70) [----] [SCAL] (1) pulsem.twomPulse.timerNegative[$i1].y = if pulsem.twomPulse.timerNegative[$i1].u then time - pulsem.twomPulse.timerNegative[$i1].entryTime else 0.0 ($RES_SIM_47) (70) [----] end for; (71) [SCAL] (1) pulsem.voltageSensor.plug_p.pin[2].v = pulsem.ac.pin[2].v ($RES_SIM_160) (72) [FOR-] (3) ($RES_SIM_48) (72) [----] for $i1 in 1:3 loop (72) [----] [WHEN] (1)when pulsem.twomPulse.timerNegative[$i1].u then (72) [----] [----] pulsem.twomPulse.timerNegative[$i1].entryTime := time (72) [----] [----] end when; (72) [----] end for; (73) [SCAL] (1) pulsem.voltageSensor.plug_p.pin[2].v = pulsem.delta.plug_n.pin[2].v ($RES_SIM_161) (74) [SCAL] (1) pulsem.voltageSensor.plug_p.pin[1].v = pulsem.ac.pin[1].v ($RES_SIM_162) (75) [SCAL] (1) pulsem.voltageSensor.plug_p.pin[1].v = pulsem.delta.plug_n.pin[1].v ($RES_SIM_163) (76) [ARRY] (3) pulsem.voltageSensor.voltageSensor.v = pulsem.voltageSensor.v ($RES_SIM_164) (77) [FOR-] (3) ($RES_SIM_165) (77) [----] for $i1 in 1:3 loop (77) [----] [SCAL] (1) pulsem.voltageSensor.voltageSensor[$i1].p.i - pulsem.voltageSensor.plug_p.pin[$i1].i = 0.0 ($RES_SIM_166) (77) [----] end for; (78) [ARRY] (3) pulsem.voltageSensor.voltageSensor.p.v = pulsem.voltageSensor.plug_p.pin.v ($RES_SIM_167) (79) [SCAL] (1) -star.pin_n.i = sum(star.plug_p.pin.i) ($RES_$AUX_244) (80) [FOR-] (3) ($RES_SIM_168) (80) [----] for $i1 in 1:3 loop (80) [----] [SCAL] (1) pulsem.voltageSensor.voltageSensor[$i1].n.i - pulsem.voltageSensor.plug_n.pin[$i1].i = 0.0 ($RES_SIM_169) (80) [----] end for; (81) [FOR-] (3) ($RES_$AUX_242) (81) [----] for $i1 in 1:3 loop (81) [----] [SCAL] (1) $FUN_2[$i1] = sin(sineVoltage_p.sineVoltage[$i1].signalSource.freqHz * 6.283185307179586 * (time - sineVoltage_p.sineVoltage[$i1].signalSource.startTime) + sineVoltage_p.sineVoltage[$i1].signalSource.phase) ($RES_$AUX_243) (81) [----] end for; (82) [SCAL] (1) -rectifier.iDC = sum(rectifier.star.plug_p.pin.i) ($RES_$AUX_241) (83) [SCAL] (1) rectifier.LossPower = sum(rectifier.thyristor.idealThyristor.LossPower) ($RES_$AUX_240) (84) [SCAL] (1) $TEV_8 = $PRE.rectifier.thyristor.idealThyristor[$i1].off ($RES_EVT_253) (85) [SCAL] (1) $SEV_1 = pulsem.twomPulse.constantconstantFiringAngle.k > pulsem.twomPulse.limiter.uMax ($RES_EVT_255) (86) [SCAL] (1) $SEV_2 = pulsem.twomPulse.constantconstantFiringAngle.k < pulsem.twomPulse.limiter.uMin ($RES_EVT_256) (87) [FOR-] (3) ($RES_EVT_258) (87) [----] for $i1 in 1:3 loop (87) [----] [SCAL] (1) $SEV_4[$i1] = pulsem.twomPulse.negativeEqual[$i1].u1 > pulsem.twomPulse.negativeEqual[$i1].u2 ($RES_EVT_259) (87) [----] end for; (88) [FOR-] (3) ($RES_SIM_50) (88) [----] for $i1 in 1:3 loop (88) [----] [SCAL] (1) pulsem.twomPulse.timerPositive[$i1].y = if pulsem.twomPulse.timerPositive[$i1].u then time - pulsem.twomPulse.timerPositive[$i1].entryTime else 0.0 ($RES_SIM_51) (88) [----] end for; (89) [FOR-] (3) ($RES_SIM_52) (89) [----] for $i1 in 1:3 loop (89) [----] [WHEN] (1)when pulsem.twomPulse.timerPositive[$i1].u then (89) [----] [----] pulsem.twomPulse.timerPositive[$i1].entryTime := time (89) [----] [----] end when; (89) [----] end for; (90) [ARRY] (3) rectifier.vAC = rectifier.ac.pin[:].v ($RES_BND_229) (91) [FOR-] (3) ($RES_SIM_54) (91) [----] for $i1 in 1:3 loop (91) [----] [SCAL] (1) pulsem.twomPulse.negativeThreshold[$i1].y = $SEV_6[$i1] ($RES_SIM_55) (91) [----] end for; (92) [FOR-] (3) ($RES_SIM_56) (92) [----] for $i1 in 1:3 loop (92) [----] [SCAL] (1) pulsem.twomPulse.positiveThreshold[$i1].y = $SEV_7[$i1] ($RES_SIM_57) (92) [----] end for; (93) [ARRY] (3) pulsem.voltageSensor.voltageSensor.n.v = pulsem.voltageSensor.plug_n.pin.v ($RES_SIM_170) (94) [SCAL] (1) -(pulsem.delta.plug_n.pin[3].i + pulsem.delta.plug_p.pin[1].i) = 0.0 ($RES_SIM_171) (95) [SCAL] (1) pulsem.delta.plug_n.pin[3].v = pulsem.delta.plug_p.pin[1].v ($RES_SIM_172) (96) [SCAL] (1) rootMeanSquareVoltage.product.y = product(rootMeanSquareVoltage.product.u) ($RES_$AUX_239) (97) [SCAL] (1) -(pulsem.delta.plug_n.pin[2].i + pulsem.delta.plug_p.pin[3].i) = 0.0 ($RES_SIM_173) (98) [SCAL] (1) pulsem.delta.plug_n.pin[2].v = pulsem.delta.plug_p.pin[3].v ($RES_SIM_174) (99) [SCAL] (1) rectifier.powerTotalAC = sum(rectifier.powerAC) ($RES_$AUX_237) (100) [SCAL] (1) -(pulsem.delta.plug_n.pin[1].i + pulsem.delta.plug_p.pin[2].i) = 0.0 ($RES_SIM_175) (101) [SCAL] (1) pulsem.delta.plug_n.pin[1].v = pulsem.delta.plug_p.pin[2].v ($RES_SIM_176) (102) [SCAL] (1) pulsem.twomPulse.realPassThrough[3].y = pulsem.twomPulse.positiveThreshold[3].u ($RES_SIM_177) (103) [SCAL] (1) pulsem.twomPulse.realPassThrough[3].y = pulsem.twomPulse.negativeThreshold[3].u ($RES_SIM_178) (104) [SCAL] (1) pulsem.twomPulse.realPassThrough[2].y = pulsem.twomPulse.positiveThreshold[2].u ($RES_SIM_179) (105) [FOR-] (3) ($RES_EVT_260) (105) [----] for $i1 in 1:3 loop (105) [----] [SCAL] (1) $SEV_5[$i1] = pulsem.twomPulse.greaterPositive[$i1].u1 > pulsem.twomPulse.greaterPositive[$i1].u2 ($RES_EVT_261) (105) [----] end for; (106) [FOR-] (3) ($RES_EVT_262) (106) [----] for $i1 in 1:3 loop (106) [----] [SCAL] (1) $SEV_6[$i1] = pulsem.twomPulse.negativeThreshold[$i1].u < pulsem.twomPulse.negativeThreshold[$i1].threshold ($RES_EVT_263) (106) [----] end for; (107) [FOR-] (3) ($RES_EVT_264) (107) [----] for $i1 in 1:3 loop (107) [----] [SCAL] (1) $SEV_7[$i1] = pulsem.twomPulse.positiveThreshold[$i1].u > pulsem.twomPulse.positiveThreshold[$i1].threshold ($RES_EVT_265) (107) [----] end for; (108) [ARRY] (3) rectifier.iAC = rectifier.ac.pin[:].i ($RES_BND_230) (109) [FOR-] (3) ($RES_EVT_266) (109) [----] for $i1 in 1:3 loop (109) [----] [SCAL] (1) $SEV_8[$i1] = rectifier.thyristor.idealThyristor[$i1].s < 0.0 ($RES_EVT_267) (109) [----] end for; (110) [ARRY] (3) rectifier.powerAC = rectifier.vAC * rectifier.iAC ($RES_BND_231) (111) [FOR-] (3) ($RES_EVT_268) (111) [----] for $i1 in 1:3 loop (111) [----] [SCAL] (1) $SEV_9[$i1] = $TEV_8 and not rectifier.thyristor.idealThyristor[$i1].fire ($RES_EVT_269) (111) [----] end for; (112) [SCAL] (1) rectifier.powerDC = rectifier.vDC * rectifier.iDC ($RES_BND_235) (113) [ARRY] (3) rectifier.thyristor.off = rectifier.thyristor.idealThyristor.off ($RES_BND_236) (114) [SCAL] (1) $DER.meanCurrent.x = -currentSensor.n.i ($RES_SIM_61) (115) [FOR-] (3) ($RES_SIM_101) (115) [----] for $i1 in 1:3 loop (115) [----] [SCAL] (1) rectifier.andCondition_p[$i1].y = $SEV_11[$i1] ($RES_SIM_102) (115) [----] end for; (116) [ARRY] (3) sineVoltage_p.i = sineVoltage_p.plug_p.pin.i ($RES_SIM_103) (117) [ARRY] (3) sineVoltage_p.v = sineVoltage_p.plug_p.pin.v - sineVoltage_p.plug_n.pin.v ($RES_SIM_104) (118) [FOR-] (3) ($RES_SIM_105) (118) [----] for $i1 in 1:3 loop (118) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].i = sineVoltage_p.sineVoltage[$i1].p.i ($RES_SIM_106) (118) [----] end for; (119) [SCAL] (1) pulsem.twomPulse.realPassThrough[2].y = pulsem.twomPulse.negativeThreshold[2].u ($RES_SIM_180) (120) [FOR-] (3) ($RES_SIM_107) (120) [----] for $i1 in 1:3 loop (120) [----] [SCAL] (1) 0.0 = sineVoltage_p.sineVoltage[$i1].p.i + sineVoltage_p.sineVoltage[$i1].n.i ($RES_SIM_108) (120) [----] end for; (121) [SCAL] (1) $DER.rootMeanSquareVoltage.mean.x = rootMeanSquareVoltage.product.y ($RES_SIM_68) (122) [SCAL] (1) pulsem.twomPulse.realPassThrough[1].y = pulsem.twomPulse.positiveThreshold[1].u ($RES_SIM_181) (123) [SCAL] (1) pulsem.twomPulse.realPassThrough[1].y = pulsem.twomPulse.negativeThreshold[1].u ($RES_SIM_182) (124) [FOR-] (3) ($RES_SIM_109) (124) [----] for $i1 in 1:3 loop (124) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].v = sineVoltage_p.sineVoltage[$i1].p.v - sineVoltage_p.sineVoltage[$i1].n.v ($RES_SIM_110) (124) [----] end for; (125) [ARRY] (3) pulsem.twomPulse.realPassThrough.u = pulsem.twomPulse.v ($RES_SIM_183) (126) [SCAL] (1) pulsem.twomPulse.replicator.y[3] = pulsem.twomPulse.greaterPositive[3].u2 ($RES_SIM_186) (127) [SCAL] (1) pulsem.twomPulse.replicator.y[3] = pulsem.twomPulse.negativeEqual[3].u2 ($RES_SIM_187) (128) [SCAL] (1) pulsem.twomPulse.replicator.y[2] = pulsem.twomPulse.greaterPositive[2].u2 ($RES_SIM_188) (129) [SCAL] (1) pulsem.twomPulse.replicator.y[2] = pulsem.twomPulse.negativeEqual[2].u2 ($RES_SIM_189) (130) [FOR-] (3) ($RES_EVT_270) (130) [----] for $i1 in 1:3 loop (130) [----] [SCAL] (1) $SEV_10[$i1] = $SEV_8[$i1] or $SEV_9[$i1] ($RES_EVT_271) (130) [----] end for; (131) [FOR-] (3) ($RES_EVT_272) (131) [----] for $i1 in 1:3 loop (131) [----] [SCAL] (1) $SEV_11[$i1] = rectifier.andCondition_p[$i1].u1 and rectifier.andCondition_p[$i1].u2 ($RES_EVT_273) (131) [----] end for; (132) [FOR-] (3) ($RES_EVT_274) (132) [----] for $i1 in 1:3 loop (132) [----] [SCAL] (1) $SEV_12[$i1] = time < sineVoltage_p.sineVoltage[$i1].signalSource.startTime ($RES_EVT_275) (132) [----] end for; (133) [FOR-] (3) ($RES_SIM_111) (133) [----] for $i1 in 1:3 loop (133) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].v = sineVoltage_p.sineVoltage[$i1].signalSource.y ($RES_SIM_112) (133) [----] end for; (134) [SCAL] (1) $DER.meanVoltage.x = meanVoltage.u ($RES_SIM_72) (135) [SCAL] (1) meanVoltage.u = rectifier.vDC ($RES_SIM_73) (136) [FOR-] (3) ($RES_SIM_113) (136) [----] for $i1 in 1:3 loop (136) [----] [SCAL] (1) sineVoltage_p.sineVoltage[$i1].signalSource.y = sineVoltage_p.sineVoltage[$i1].signalSource.offset + (if $SEV_12[$i1] then 0.0 else sineVoltage_p.sineVoltage[$i1].signalSource.amplitude * $FUN_2[$i1]) ($RES_SIM_114) (136) [----] end for; (137) [FOR-] (3) ($RES_SIM_116) (137) [----] for $i1 in 1:3 loop (137) [----] [SCAL] (1) star.plug_p.pin[$i1].v = 0.0 ($RES_SIM_117) (137) [----] end for; (138) [SCAL] (1) pulsem.twomPulse.replicator.y[1] = pulsem.twomPulse.greaterPositive[1].u2 ($RES_SIM_190) (139) [SCAL] (1) pulsem.twomPulse.replicator.y[1] = pulsem.twomPulse.negativeEqual[1].u2 ($RES_SIM_191) (140) [FOR-] (3) ($RES_SIM_79) (140) [----] for $i1 in 1:3 loop (140) [----] [SCAL] (1) rectifier.star.plug_p.pin[$i1].v = rectifier.vDC ($RES_SIM_80) (140) [----] end for; (141) [SCAL] (1) -(currentSensor.n.i + inductor.i) = 0.0 ($RES_SIM_119) (142) [ARRY] (3) pulsem.twomPulse.negativeEqual.y = pulsem.twomPulse.fire_n ($RES_SIM_193) (143) [ARRY] (3) pulsem.twomPulse.greaterPositive.y = pulsem.twomPulse.fire_p ($RES_SIM_194) (144) [ARRY] (3) pulsem.twomPulse.negativeEqual.u1 = pulsem.twomPulse.timerNegative.y ($RES_SIM_195) (145) [ARRY] (3) pulsem.twomPulse.timerPositive.y = pulsem.twomPulse.greaterPositive.u1 ($RES_SIM_196) (146) [ARRY] (3) pulsem.twomPulse.negativeThreshold.y = pulsem.twomPulse.timerNegative.u ($RES_SIM_197) (147) [ARRY] (3) pulsem.twomPulse.positiveThreshold.y = pulsem.twomPulse.timerPositive.u ($RES_SIM_198) (148) [SCAL] (1) meanVoltage.u = rootMeanSquareVoltage.product.u[1] ($RES_SIM_199) (149) [SCAL] (1) meanVoltage.u = rootMeanSquareVoltage.product.u[2] ($RES_SIM_200)