Environment - simulationEnvironment: startTime=0 stopTime=0 tolerance=1e-06 numberOfIntervals=2500 stepSize=0 Regular simulation: ./ModelicaTest_3.2.3_ModelicaTest.Math.TestNonlinear -abortSlowSimulation -alarm=480 -lv LOG_STATS LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto1: LOG_STDOUT | info | Function 1 ( integral(sin(x)*dx) from x=0 to x=1): LOG_STDOUT | info | Analytical integral value = 0.4596976941318602 LOG_STDOUT | info | Numerical integral value = 0.4596976941318209 LOG_STDOUT | info | Absolute difference = 4e-14 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (integral(sin(5*x)*dx) from x=0 to x=13): LOG_STDOUT | info | Analytical integral value = 0.3124907702476344 LOG_STDOUT | info | Numerical integral value = 0.3124907702520362 LOG_STDOUT | info | Absolute difference = 4e-12 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (Elliptic integral from x=0 to pi/2): LOG_STDOUT | info | Analytical integral value = 1.8540746773013719 LOG_STDOUT | info | Numerical integral value = 1.8540746773012193 LOG_STDOUT | info | Absolute difference = 2e-13 LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.quadratureLobatto2: LOG_STDOUT | info | Function 1 (integral(sin(x)*dx)): LOG_STDOUT | info | Numerical integral value = 0.4596976941318209 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (integral(sin(w*x)*dx)): LOG_STDOUT | info | Numerical integral value = 0.3124907702520362 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (Elliptic integral): LOG_STDOUT | info | Numerical integral value = 1.8540746773012193 LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations1: LOG_STDOUT | info | Solve 3 nonlinear equations with relative tolerance = 1e-13 | | | | LOG_STDOUT | info | Function 1 (u^2 - 1 = 0): LOG_STDOUT | info | Analytical zero = 1.0000000000000000 LOG_STDOUT | info | Numerical zero = 1.0000000000000000 LOG_STDOUT | info | Absolute difference = 0e+00 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (3*u - sin(3*u) - 1 = 0): LOG_STDOUT | info | Analytical zero = 0.6448544035840081 LOG_STDOUT | info | Numerical zero = 0.6448544035840081 LOG_STDOUT | info | Absolute difference = 0e+00 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (5 + log(u) - u = 0): LOG_STDOUT | info | Analytical zero = 6.9368474072202186 LOG_STDOUT | info | Numerical zero = 6.9368474072202186 LOG_STDOUT | info | Absolute difference = 0e+00 LOG_STDOUT | info | | | | | ... Results of Modelica.Math.Nonlinear.Examples.solveNonlinearEquations2: LOG_STDOUT | info | Solve 3 nonlinear equations with relative tolerance = 1e-13 | | | | LOG_STDOUT | info | Function 1 (u^2 - 1): LOG_STDOUT | info | Numerical zero = 1.0000000000000000 LOG_STDOUT | info | LOG_STDOUT | info | Function 2 (3*u - sin(w*u) - 1): LOG_STDOUT | info | Numerical zero = 0.6448544035840081 LOG_STDOUT | info | LOG_STDOUT | info | Function 3 (p[1] + log(p[2]*u) - m*u): LOG_STDOUT | info | Numerical zero = 6.9368474072202186 LOG_SUCCESS | info | The initialization finished successfully without homotopy method. LOG_STATS | info | ### STATISTICS ### | | | | | timer | | | | | | 0.000224441s reading init.xml | | | | | | 4.4764e-05s reading info.xml | | | | | | 6.394e-05s [ 11.7%] pre-initialization | | | | | | 0.000477536s [ 87.2%] initialization | | | | | | 0s [ 0.0%] steps | | | | | | 0s [ 0.0%] solver (excl. callbacks) | | | | | | 0s [ 0.0%] creating output-file | | | | | | 0s [ 0.0%] event-handling | | | | | | 0s [ 0.0%] overhead | | | | | | 5.901e-06s [ 1.1%] simulation | | | | | | 0.000547377s [100.0%] total | | | | | events | | | | | | 0 state events | | | | | | 0 time events | | | | | solver: euler | | | | | | 0 steps taken | | | | | | 0 calls of functionODE | | | | | | 0 evaluations of jacobian | | | | | | 0 error test failures | | | | | | 0 convergence test failures | | | | | | 0s time of jacobian evaluation LOG_SUCCESS | info | The simulation finished successfully.